Topic 27: Linear phase portraits (day 1) Jeremy Orloff

1 Agenda

- Qualitative view of linear systems $\mathbf{x}' = A\mathbf{x}$
- Phase plane (xy-plane) and phase portraits
- Summary of types of critical points at 0
 - Main cases
 - Edge cases
 - Applet: https://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/
- Drawing phase portraits

2 Qualitative view of linear systems

Example 1. Say $\begin{bmatrix} x'\\y' \end{bmatrix} = A \begin{bmatrix} x\\y \end{bmatrix}$. Suppose we find the general solution is $\begin{bmatrix} x\\y \end{bmatrix} = c_1 e^{-7t} \begin{bmatrix} 5\\1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -1\\1 \end{bmatrix}$.

Then

- $\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a trivial solution (i.e., $c_1 = 0, c_2 = 0$). - Equilibrium (constant in time). - Critical point: $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
- All solutions go asymptotically to 0 (negative exponents).
 - All solutions go asymptotically to the equilibrium.
 - In this case, $\begin{bmatrix} 0\\0 \end{bmatrix}$ is called a dynamically stable equilibium or dynamically stable critical point.
- The system is qualitatively the same as one with the solution

$$\mathbf{x}(t) = c_1 e^{-2t} \begin{bmatrix} 3\\ 4 \end{bmatrix} + c_2 e^{-5t} \begin{bmatrix} 2\\ -1 \end{bmatrix}.$$

Key: Quality is determined by the eigenvalues.

3 Phase portraits

Phase plane = xy-plane.

A trajectory = graph of a solution (x(t), y(t)) as a parametrized curve in the plane.

Example 2. Suppose $\mathbf{x_1}(t) = \begin{bmatrix} x_1(t) \\ y_1(t) \end{bmatrix} = \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}$, $\mathbf{x_2}(t) = 2\begin{bmatrix} \cos t \\ \sin t \end{bmatrix}$, $\mathbf{x_3}(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Sketch the 3 trajectories.

Solution:

Trajectories of $\mathbf{x_1}(t)$, $\mathbf{x_2}(t)$, $\mathbf{x_3}(t)$

4 Main types of critical points by eigenvalues

The name describes the equilibrium at (0,0).

$\lambda_1 \neq \lambda_2$, both real, positive	(0,0) = nodal source	(dynamically unstable equilibrium)
$\lambda_1 \neq \lambda_2$, both real, negative	(0,0) = nodal sink	(dynamically stable equilibrium)
$\lambda_1 < 0, \lambda_2 > 0, \text{ both real}$	(0,0) = saddle	(dynamically unstable equilibrium)
$\lambda=\alpha+i\beta, \ \alpha>0, \ \beta\neq 0$	(0,0) = spiral source	(dynamically unstable equilibrium)
$\lambda = \alpha + i\beta, \ \alpha < 0, \beta \neq 0$	(0,0) = spiral sink	(dynamically stable equilibrium)

Show applet: https://mathlets.org/mathlets/linear-phase-portraits-matrix-entry/

5 Drawing phase portraits

Phase portrait: Draw enough trajectories to get the idea. Always include the equilibium solution.

Example 3. Suppose the solution to
$$\mathbf{x}' = A\mathbf{x}$$
 is $\mathbf{x}(t) = c_1 e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Sketch a phase portrait.

Solution: From the table above, λ are positive and unequal \longrightarrow nodal source.

The final sketch is below. Here are the steps.

Step 1: Sketch the equilibrium solution: $\mathbf{x}(t) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ = single point.

Step 2: Sketch the modes:

Modal solutions: $\mathbf{x_1}(t) = c_1 e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{x_2}(t) = c_2 e^{2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$

Mode $e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix}$: trajectory = positive *x*-axis. Mode $-e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix}$: trajectory = negative *x*-axis.

Likewise, the trajectories of $\mathbf{x}(t) = e^{2t} \begin{bmatrix} 0\\1 \end{bmatrix}$, $\mathbf{x}(t) = -e^{2t} \begin{bmatrix} 0\\1 \end{bmatrix}$ are the positive and negative *y*-axis.

Summary: modes give straight line trajectories.

Step 3: Sketch some "mixed modal" solutions, e.g., $\mathbf{x}(t) = e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix} + e^{2t} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. <u>Asymptotics as $t \to \infty$ </u>: As $t \to \infty$, $\mathbf{x}(t)$ goes to infinity.

$$\mathbf{x}'(t) = e^t \begin{bmatrix} 1\\ 0 \end{bmatrix} + 2e^{2t} \begin{bmatrix} 0\\ 1 \end{bmatrix} = e^{2t} \left(e^{-t} \begin{bmatrix} 1\\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0\\ 1 \end{bmatrix} \right).$$

$$| to e^{-t} \begin{bmatrix} 1\\ 1 \end{bmatrix} + 2 \begin{bmatrix} 0\\ 1 \end{bmatrix}$$

So $\mathbf{x}'(t)$ is parallel to $e^{-t} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

So it is asymptotically parallel to $\begin{bmatrix} 0\\1 \end{bmatrix}$, i.e., asymptotically parallel to the mode with the bigger λ .

<u>Asymptotics as $t \to -\infty$ </u>: As $t \to -\infty$, $\mathbf{x}(t)$ goes to zero.

$$\mathbf{x}'(t) = e^t \begin{bmatrix} 1\\0 \end{bmatrix} + 2e^{2t} \begin{bmatrix} 0\\1 \end{bmatrix} = e^t \left(\begin{bmatrix} 1\\0 \end{bmatrix} + 2e^t \begin{bmatrix} 0\\1 \end{bmatrix} \right).$$

So $\mathbf{x}'(t)$ is parallel to $\begin{bmatrix} 1\\ 0 \end{bmatrix} + 2e^t \begin{bmatrix} 0\\ 1 \end{bmatrix}$.

So it is asymptotically parallel to $\begin{bmatrix} 0\\1 \end{bmatrix}$, i.e., asymptotically parallel to the mode with the smaller λ .

Nodal source at (0,0) – eigenvalues positive, different. All trajectories "flow out" from the origin.

Key points

- Trajectories don't cross
- They fill up the plane
- Different solutions with the same trajectory have different initial values, e.g.,

$$\begin{aligned} \mathbf{x_1}(t) &= e^t \begin{bmatrix} 1\\0 \end{bmatrix} \text{ and } \mathbf{x_2}(t) = 2e^t \begin{bmatrix} 1\\0 \end{bmatrix} \text{ have the same trajectory, but} \\ \mathbf{x_1}(0) &= \begin{bmatrix} 1\\0 \end{bmatrix} \text{ and } \mathbf{x_2}(0) = \begin{bmatrix} 2\\0 \end{bmatrix} \text{ are different initial values.} \end{aligned}$$

- For nodal sources:
 - As $t \to \infty$, $\mathbf{x}(t) \to \infty$ and trajectories become parallel to the mode with the bigger λ .
 - As $t \to -\infty$, $\mathbf{x}(t) \to \mathbf{0}$ and trajectories become tangent to the mode with the smaller λ .
 - Positive, different eigenvalues give the same qualitative picture, i.e., a nodal source.

Here is a phase portrait for a system with solution $\mathbf{x}(t) = c_1 e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{3t} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Qualitatively, it has the same phase portrait as our previous example.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.