Solutions Day 6, M 2/12/2024

Topic 4: Complex numbers (day 1) Jeremy Orloff

Problem 1. Let $z_1 = 2 + 5i$, $z_2 = 1 + 3i$ (a) Compute $z_1 + z_2$, $z_1 \cdot z_2$, $z_1 \cdot \overline{z_1}$, $|z_1|$, $\operatorname{Arg}(z_1)$. Solution: $z_1 + z_2 = 3 + 8i$. $z_1 \cdot z_2 = (2 + 5i)(1 + 3i) = 2 - 15 + 6i + 5i = -13 + 11i$. $z_1 \cdot \overline{z_1} = (2 + 5i)(2 - 5i) = 4 + 25 = 29$. $|z_1| = \sqrt{2^2 + 5^2} = \sqrt{29}$. Arg $(z_1) = \tan^{-1}(5/2)$ in Q1. (b) Find Re (z_1) , Im (z_1) . Solution: Re $(z_1) = 2$, Im $(z_1) = 5$. (Imaginary part is a real number!) (c) Let z = x + iy. Compute $z \cdot \overline{z}$. Solution: $z \cdot \overline{z} = (x + iy)(x - iy) = x^2 + y^2 = |z|^2$.

Problem 3. (a) Write $\frac{i}{2}$ in polar form.

Solution: Looking at the picture, we see $\left|\frac{i}{2}\right| = \frac{1}{2}$, $\operatorname{Arg}\left(\frac{i}{2}\right) = \frac{\pi}{2}$. So, $\left|\frac{i}{2} = \frac{1}{2}e^{i\pi/2}\right|$.

$$\xrightarrow{y}_{i/2} x$$

Multiply the diagram by i/2, i.e., sketch the resulting image.

Solution: If $z = re^{i\theta}$ then $\frac{i}{2} \cdot z = \frac{1}{2}e^{i\pi/2} \cdot re^{i\theta} = \frac{r}{2}e^{i(\theta+\pi/2)}$. So multiplication by i/2 scales z by 1/2 and rotates it by $\pi/2$ counterclockwise. The sketch is below.

Problem 4. Show $\overline{e^{i\theta}} = e^{-i\theta}$. Solution: $\overline{e^{i\theta}} = \overline{\cos \theta + i \sin \theta} = \cos \theta - i \sin \theta = \cos(-\theta) + i \sin(-\theta) = e^{-i\theta}$

Problem 5. Compute $(1 + \sqrt{3}i)^{10}$. (Use polar form.)

Solution: We write $1 + \sqrt{3}i$ in polar form.

Magnitude: $|1 + \sqrt{3}i| = 2$.

Argument: We recognize the 30°, 60°, 90° triangle. So, $\operatorname{Arg}(1 + \sqrt{3}i) = \pi/3$. Thus, $1 + \sqrt{3}i = 2e^{i\pi/3}$.

Thus, $(1 + \sqrt{3}i)^{10} = (2e^{i\pi/3})^{10} = 2^{10}e^{i10\pi/3} = 2^{10}e^{i4\pi/3} = 2^{10} \cdot \left(\frac{-1 - \sqrt{3}i}{2}\right).$ (The step leading to $2^{10}e^{i4\pi/3}$ is because $10\pi/3 = 4\pi/3 + 2\pi.$)

Problem 6. Compute $I = \int e^x \cos(5x) dx$.

Solution: Complexify: $I_c = \int e^x e^{5xi} dx = \int e^{x(1+5i)} dx.$

 $\begin{array}{ll} \mbox{Relation:} & I = \mbox{Re}(I_c).\\ \mbox{Computing:} & I_c = \frac{e^{x(1+5i)}}{1+5i}. \end{array}$

We need to find the real part of I_c . In 18.03 we use polar form, so first we need to find the polar form of 1 + 5i.

$$|1+5i| = \sqrt{26}; \quad \phi = \operatorname{Arg}(1+5i) = \tan^{-1}(5) \text{ in } Q1.$$

So, $1 + 5i = \sqrt{26}e^{i\phi}$. This gives, $I_c = \frac{e^{(1+5i)x}}{1+5i} = \frac{e^x e^{5xi}}{\sqrt{26}e^{i\phi}} = \frac{e^x}{\sqrt{26}}e^{i(5x-\phi)}$.

$$\begin{split} \text{Expanding this:} \quad I_c &= \frac{e^x}{\sqrt{26}} \left(\cos(5x-\phi) + i \sin(5x-\phi) \right) \\ \text{Thus,} \boxed{I = \text{Re}(I_c) = \frac{e^x}{\sqrt{26}} \cos(5x-\phi)}. \end{split}$$

Note: As we get comfortable with this, we will skip writing down so many of the steps.

Problem 7.

(a) Find the fifth roots of 1. Draw a picture.

Solution: Write 1 in polar form with all possible θ :

$$1 = e^{i2\pi n}$$
, *n* any integer.

We want z so that $z^5 = 1 = e^{i \cdot 2\pi n}$. So,

$$z = e^{i \cdot 2\pi n/5} = \underbrace{\underbrace{\hat{e^0}}_{5}, e^{i \cdot 2\pi/5}, e^{i \cdot 4\pi/5}, e^{i \cdot 6\pi/5}, e^{i \cdot 8\pi/5}}_{5 \text{ fifth roots}}, \underbrace{e^{i \cdot 8\pi/5}}_{6i \cdot 10\pi/5}, \underbrace{e^{i \cdot 10\pi/5}}_{0i \cdot 10\pi/5}, \dots$$

On the plot, the roots are evenly spaced every $2\pi/5 = 72^{\circ}$ around the unit circle.

Left: picture for Part (a)

right: picture for Part (b)

(b) Find the fifth roots of 1 + i. Draw a picture.

Solution: The idea is the same idea as Part (a). We have $1 + i = \sqrt{2}e^{i\pi/4 + 2n\pi}$. So, $z^5 = 1 + i \implies z = 2^{1/10}e^{i(\pi/20 + 2n\pi/5)}$. The 5 roots are

 $2^{1/10}e^{i\pi/20},\ 2^{1/10}e^{i9\pi/20},\ 2^{1/10}e^{i17\pi/20},\ 2^{1/10}e^{i25\pi/20},\ 2^{1/10}e^{i33\pi/20}.$

Graphically the five roots are evenly spaced around the circle of radius $2^{1/10}$.

Problem 8.

(a) Draw the trajectory of $z = e^{it}$

Solution: $z = e^{it} = \cos t + i \sin t$. This always has unit length. So the trajectory goes round and round the unit circle.

Left: plot for Part (a);

right: plot for Part (b)

(b) Draw the trajectory of $z = te^{it}$

Solution: This is similar to Part (a), except the factor of t causes the magnitude of z to grow. The trajectory spirals out from the origin.

(c) Plot the points $e^{ij\pi/4}$, for j = 0, 1, 2, 3 ...

Solution: Note: $e^{i8\pi/4} = e^{i2\pi} = 1$. These are the 8th roots of 1, i.e., $z^8 = 1$.

$$\begin{aligned} z &= \mathrm{e}^{i \cdot 3\pi/4} = \mathrm{e}^{i \cdot 11\pi/4} = \dots \\ j &= 3, \, 11, \, 19, \dots \\ z &= \mathrm{e}^{i \cdot 4\pi/4} = \mathrm{e}^{i \cdot 12\pi/4} = \dots \\ j &= 1, \, 9, \, 17, \dots \\ j &= 1, \, 9, \, 17, \dots \\ j &= 1, \, 9, \, 17, \dots \\ j &= 1, \, 9, \, 17, \dots \\ j &= 0, \, 8, \, 16, \dots \\ j &= 5, \, 13, \, 21, \dots \end{aligned}$$

Problem 9.

(a) Write $\sin t$ and $\cos t$ in terms of e^{it} and e^{-it} .

Solution: Expand the exponentials: $\begin{cases} e^{it} &= \cos t + i \sin t \\ e^{-it} &= \cos t - i \sin t \end{cases}$

Adding and subtracting:
$$\begin{cases} e^{it} + e^{-it} = 2\cos t\\ e^{it} - e^{-it} = 2i\sin t \end{cases}$$
So,
$$\begin{aligned} \cos t &= \frac{e^{it} + e^{-it}}{2}\\ \sin t &= \frac{e^{it} - e^{-it}}{2i} \end{aligned}$$

(b) Find all <u>real-valued</u> functions of the form $f(t) = c_1 e^{it} + c_2 e^{-it}$, where c_1 , c_2 are complex constants.

Solution: From Part (a), we see that

$$\frac{1}{2}e^{it} + \frac{1}{2}e^{-it} = \cos t$$
 and $\frac{1}{2i}e^{it} - \frac{1}{2i}e^{-it} = \sin t$

are real-valued linear combinations of e^{it} and e^{-it} . Thus, for a, b real numbers,

$$\left(\frac{a}{2} + \frac{b}{2i}\right)e^{it} + \left(\frac{a}{2} - \frac{b}{2i}\right)e^{-it} = a\cos t + b\sin t$$

are the real-valued linear combinations of e^{it} and e^{-it} .

Problem 10. Find all the roots of $x^4 + x^2 = 0$.

Solution: This is fourth-order, so there are 4 roots. Factoring:

$$x^2(x^2+1) = 0 \implies x = 0, 0, i, -i \text{ are the 4 roots}$$

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.