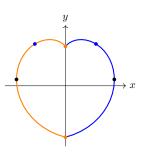
Problems Day 6, M 2/12/2024

Topic 4: Complex numbers (day 1) Jeremy Orloff


Problem 1. Let $z_1 = 2 + 5i$, $z_2 = 1 + 3i$

- (a) Compute $z_1 + z_2$, $z_1 \cdot z_2$, $z_1 \cdot \overline{z_1}$, $|z_1|$, $\operatorname{Arg}(z_1)$.
- (b) Find $\text{Re}(z_1)$, $\text{Im}(z_1)$.
- (c) Let z = x + iy. Compute $z \cdot \overline{z}$.

Problem 2. Find r and $\theta = \operatorname{Arg}(z)$ for z = i, z = 1 - i, z = 5(1 - i).

Problem 3. (a) Write $\frac{i}{2}$ in polar form.

(b) Consider the diagram

Multiply the diagram by i/2, i.e., sketch the resulting image.

Problem 4. Show $\overline{e^{i\theta}} = e^{-i\theta}$.

Problem 5. Compute $(1 + \sqrt{3}i)^{10}$. (Use polar form.)

Problem 6. Compute $I = \int e^x \cos(5x) dx$.

Problem 7.

(a) Find the fifth roots of 1. Draw a picture.

(b) Find the fifth roots of 1 + i. Draw a picture.

Problem 8.

- (a) Draw the trajectory of $z = e^{it}$
- (b) Draw the trajectory of $z = te^{it}$
- (c) Plot the points $e^{ij\pi/4}$, for j = 0, 1, 2, 3 ...

Problem 9.

(a) Write $\sin t$ and $\cos t$ in terms of e^{it} and e^{-it} .

(b) Find all <u>real-valued</u> functions of the form $f(t) = c_1 e^{it} + c_2 e^{-it}$, where c_1, c_2 are complex constants.

Problem 10. Find all the roots of $x^4 + x^2 = 0$.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.