
18.03: Existence and Uniqueness Theorem
Jeremy Orloff 

1 Introduction 

The existence and uniqueness theorem for differential equations is a key technical result. 
For example, when we solve an equation like 𝑥″ + 8𝑥′ + 7𝑥 = 0, we first find the modal 
solutions 𝑥1(𝑡) = 𝑒𝑡, 𝑥2(𝑡) = 𝑒7𝑡. Then we claim that the general solution is the set of all 
linear combinations, i.e., 𝑥(𝑡) = 𝑐1𝑒𝑡 + 𝑐2𝑒7𝑡. The algebra leading to this makes it clear that 
𝑥(𝑡) is a solution, but it does not show that this is all the solutions. To show that we need 
the existence and uniqueness theorem. 
The analysis needed in the proof of the theorem is beyond what we can do in ES.1803. But, 
the proof using Picard iteration is quite beautiful and we can give an outline which will give 
you a sense of how one goes about proving something like this. 

2 Statement of the theorem 

Theorem (Existence and uniqueness)
𝜕𝑓 Suppose 𝑓(𝑡, 𝑦) and 𝜕𝑦 

(𝑡, 𝑦) are continuous on the rectangle 𝐷 as shown. Suppose also that 

(𝑡0, 𝑦0) is in 𝐷 and we have the IVP 

𝑑𝑦 = 𝑓(𝑡, 𝑦(𝑡)), 𝑦(𝑡0) = 𝑦0𝑑𝑡 
Then, we can choose a smaller rectangle 𝑅 (as shown) so that the IVP has a unique solution, 
which is defined on [𝑡0 − 𝑎, 𝑡0 + 𝑎] and whose graph is entirely inside 𝑅. 

t

y

(t0, y0)

D = big rectangle

R = middle rect.

y0 − b

y0

y0 + b

t0 − a t0 t0 + a

3 Proof 

The proof proceeds in a series of steps. Some of these steps are technical –I’ll try to give a 
sense of why they are true. The key steps are the definition of the contraction map 𝑇 (Step 
3) and the use of 𝑇 in Picard iteration (Step 8). 
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Step 1: Lipshcitz condition 

𝜕𝑓 Let 𝑀 = max |𝑓(𝑡, 𝑦)| and 𝐿 = max ∣ 𝜕𝑦 
(𝑡, 𝑦)∣.

𝐷 𝐷 

If (𝑡, 𝑦1) and (𝑡, 𝑦2) are in 𝐷, then the mean value theorem implies 𝑓(𝑡, 𝑦2) − 𝑓(𝑡, 𝑦1) = 
𝜕𝑓 
𝜕𝑦 

(𝑡, 𝑐) (𝑦2 − 𝑦1) (for some 𝑐 between 𝑦1 and 𝑦2). Thus, 

|𝑓(𝑡, 𝑦2) − 𝑓(𝑡, 𝑦1)| < 𝐿 |𝑦2 − 𝑦1| (Lipshcitz condition). 

Step 2: Choosing the rectangle 𝑅 

1Choose 𝑎 < min( 
𝑏 

2𝐿). This defines the rectangle 𝑅 (see above figure). We will use this𝑀 
, 

in steps 3 and 5. 

Step 3: The operator 𝑇 

Let Y be the space of all functions 𝑦(𝑡) which are continuous on [𝑡0 − 𝑎, 𝑡0 + 𝑎] and whose 
graph is entirely inside 𝑅. For any 𝑦 ∈ Y define 

𝑇 𝑦 = 𝑧(𝑡) = 𝑦0 + ∫
𝑡
𝑓(𝑠, 𝑦(𝑠)) 𝑑𝑠. 

𝑡0 

We note a number of easy facts about 𝑇 . 
(a) 𝑇 𝑦 = 𝑧(𝑡) is well defined on [𝑡0 − 𝑎, 𝑡0 + 𝑎]. (Proof: (𝑠, 𝑦(𝑠)) is in 𝑅, so the integrand 
𝑓(𝑠, 𝑦(𝑠)) is defined and continuous.) 

(b) 𝑧(𝑡) is continuous. (Proof: trivial since both 𝑦 and 𝑓 are continuous.) 

(c) The graph of 𝑧(𝑡) is entirely in 𝑅. 

Proof: |𝑧(𝑡) − 𝑦0| = ∣∫
𝑡
𝑓(𝑠, 𝑦(𝑠)) 𝑑𝑠∣ ≤ 𝑀 |𝑡 − 𝑡0| ≤ 𝑀𝑎 < 𝑏. (The last inequality follows 

𝑡0 

from the choice of 𝑎 in Step 2.) 

(d) 𝑧′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)) (Proof: fundamental theorem of calculus). 

Facts a-c show 𝑇 maps the space Y into itself. 

Definition: For the function 𝑦 ∈ Y, if 𝑇 𝑦 = 𝑦, then 𝑦 is called a fixed point of 𝑇 . 
Claim: 𝑦 is a solution to the IVP ⇔ 𝑦 is a fixed point of 𝑇 . 
Proof: Suppose 𝑦 is a solution, i.e., 𝑦(𝑡0) = 𝑦0 and 𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)). We have: 

𝑇 𝑦 = 𝑦0 + ∫
𝑡
𝑓(𝑠, 𝑦(𝑠)) 𝑑𝑠 

𝑡0
𝑡 

= 𝑦0 + ∫ 
𝑡0 

𝑦′(𝑠) 𝑑𝑠 = 𝑦0 + 𝑦(𝑠)|𝑡𝑡0 
= 𝑦(𝑡). 

So 𝑦 is a fixed point of 𝑇 . 

Conversely, suppose 𝑦 is a fixed point, then 𝑦 = 𝑇 𝑦 = 𝑦0 + ∫
𝑡
𝑓(𝑠, 𝑦(𝑠)) 𝑑𝑠. 

𝑡0 
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This implies 𝑦(𝑡0) = 𝑦0 and 𝑦′ = 𝑓(𝑡, 𝑦(𝑡)), i.e., 𝑦 satisfies the IVP. QED 

The claim shows that proving existence and uniqueness is equivalent to proving that 𝑇 has 
a unique fixed point. (This is proved in steps 8 and 9 below.) 

Step 4: The metric on Y 

For 𝑦1 and 𝑦2 in Y define 

𝛿(𝑦1, 𝑦2) = max |𝑦1(𝑡) − 𝑦2(𝑡)|.
[𝑡0−𝑎,𝑡0+𝑎] 

𝛿 is called a metric on Y. We have the following facts about 𝛿. 
(a) 𝛿(𝑦1, 𝑦2) = 0 ⇔ 𝑦1 = 𝑦2 (Proof: trivial). 
(b) 𝛿 satisfies the triangle inequality: 𝛿(𝑦1, 𝑦2) + 𝛿(𝑦2, 𝑦3) ≥ 𝛿(𝑦1, 𝑦3) (Proof: not hard). 
(c) 𝛿 tells how to measure ’closeness’ between ’points’ of Y. 
(d) (Technical statement) Y is a complete metric space. That is, all Cauchy sequences in 
Y converge to a function in Y. 
It is enough for us to know that this implies the following: If the sequence 𝑦0, 𝑦1, … satisfies
∑ 𝛿(𝑦𝑛+1, 𝑦𝑛) < ∞ then the sequence converges, i.e., lim 𝑦𝑛 = 𝑦 exists.

𝑛→∞ 

Completeness is not hard to show. It does require a careful ’𝜖 − 𝛿’ proof. 

Step 5: Claim: 𝛿(𝑇 𝑦1, 𝑇 𝑦2) ≤ 2
1𝛿(𝑦1, 𝑦2). 

Proof: 

|𝑇 𝑦1(𝑡) − 𝑇 𝑦2(𝑡)| = ∣∫
𝑡
𝑓(𝑠, 𝑦1(𝑠)) − 𝑓(𝑠, 𝑦2(𝑠)) 𝑑𝑠∣ 

𝑡0 

≤ ∫
𝑡
|𝑓(𝑠, 𝑦1(𝑠)) − 𝑓(𝑠, 𝑦2(𝑠))| 𝑑𝑠 

𝑡0 

≤ 𝐿 ∫
𝑡 

|𝑦1(𝑠) − 𝑦2(𝑠)| 𝑑𝑠 (Lipschitz condition) 
𝑡0 

≤ 𝐿𝛿(𝑦1, 𝑦2) ∫
𝑡 

𝑑𝑠 (pull out max(𝑦1(𝑠) − 𝑦2(𝑠)))
𝑡0 

= 𝐿𝛿(𝑦1, 𝑦2)(𝑡 − 𝑡0)
≤ 𝛿(𝑦1, 𝑦2) 𝐿 ⋅ 𝑎 

< 
1
2𝛿(𝑦1, 𝑦2) QED 

The last inequality uses the choice of 𝑎 in Step 2. 
Note: since 𝑇 shrinks distances it is called a contraction mapping. 

Step 6: Claim: 𝑇 has at most one fixed point. 
Proof: Suppose there were two different fixed points 𝑦1and 𝑦2. Then since 𝑇 𝑦𝑗 = 𝑦𝑗 we get 

𝛿(𝑇 𝑦1, 𝑇 𝑦2) = 𝛿(𝑦1, 𝑦2). But this contradicts Step 5, where we saw 𝛿(𝑇 𝑦1, 𝑇 𝑦2) ≤ 
1
2𝛿(𝑦1, 𝑦2). 



4 EXAMPLE OF PICARD ITERATION 4 

Step 7: If the sequence 𝑦0, 𝑦1, 𝑦2, … converges to 𝑦 then 𝑇 𝑦0, 𝑇 𝑦1, 𝑇 𝑦2, … converges to 
𝑇 𝑦. 
Formally: 𝑇 is a continuous map of Y to itself. 

Step 8: Picard itereation 

Start with 𝑦0(𝑡) = 𝑦0. Let 𝑦1 = 𝑇 𝑦0, 𝑦2 = 𝑇 𝑦1 = 𝑇 2𝑦0, …, 𝑦𝑛+1 = 𝑇 𝑦𝑛 = 𝑇 𝑛𝑦0. 

Claim: The sequence 𝑦0, 𝑦1, … converges. 

Proof: 𝛿(𝑦2, 𝑦1) = 𝛿(𝑇 𝑦1, 𝑇 𝑦0) ≤ 
1
2𝛿(𝑦1, 𝑦0). 

Likewise, 𝛿(𝑦3, 𝑦2) = 𝛿(𝑇 𝑦2, 𝑇 𝑦1) ≤ 
1
2𝛿(𝑦2, 𝑦1) ≤ 

1
4𝛿(𝑦1, 𝑦0). 

𝑛 ∞ ∞ 𝑛 

Generally, 𝛿(𝑦𝑛+1, 𝑦𝑛) ≤ (1
2) 𝛿(𝑦1, 𝑦0). So, ∑ 𝛿(𝑦𝑛+1, 𝑦𝑛) ≤ 𝛿(𝑦1, 𝑦0) ∑ (2

1) . 
𝑛=0 0 

Since this last sum converges, so the completeness of Y proves the claim. 

Step 9: Take the sequence from Step 8 and let 𝑦 = lim 𝑦𝑛.
𝑛→∞ 

Claim: 𝑦 is a fixed point of 𝑇 . 
Proof: Since 𝑦 = lim 𝑇 𝑛𝑦0, we have 𝑇 𝑦 = lim 𝑇 𝑛+1𝑦0 = 𝑦. QED 

We have now proved the existence and uniqueness theorem. That is, we know that all 
solutions are fixed points of 𝑇 and we have shown that 𝑇 has a unique fixed poont. 

4 Example of Picard iteration 

Example: (Picard iteration) Consider the IVP 𝑦′ = 𝑦, 𝑦(0) = 1. 
Picard iteration starts with 𝑦0(𝑡) = 1. Then, 

𝑡 𝑡 

𝑦1(𝑡) = 𝑦0 + ∫ 𝑦0(𝑠) 𝑑𝑠 = 1 + ∫ 1 𝑑𝑠 = 1 + 𝑡 
0 0

𝑡 𝑡 

𝑦2(𝑡) = 𝑦0 + ∫ 𝑦1(𝑠) 𝑑𝑠 = 1 + ∫ 1 + 𝑡 𝑑𝑠 = 1 + 𝑡 + 
𝑡
2
2 

0 0
𝑡 𝑡 

2 
+ 

𝑡3
𝑦3(𝑡) = 𝑦0 + ∫ 𝑦2(𝑠) 𝑑𝑠 = 1 + ∫ 1 + 𝑡 + 

𝑡
2
2

𝑑𝑠 = 1 + 𝑡 + 
𝑡2 

3! . 0 0 

So, Picard iteration leads to the power series for 𝑒𝑡, which we know is the solution to this 
IVP. 
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