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1 Introduction 

In Topic 21 we stated, without proof, the Fourier theorem, which says that a period 2𝐿 
function can be written as a Fourier series with the coefficients given by some integral 
formulas. In Topic 22 we used the orthogonality relations to show that a periodic function 
with a Fourier series must have the coefficients given by the integral formulas. 
This only proves half the Fourier theorem. The other half is to show that every periodic 
function must have a Fourier series. That is, we must show that a continuous periodic 
function actually equals its Fourier series. This is the goal of this note. 
To keep things simple, we will only work with period 2𝜋 functions. The generalization to 
period 2𝐿 functions is just a change of variable. 
That every period 2𝜋 function has a Fourier series is called completeness. This is because 
it says the set of functions {cos(𝑛𝑡), sin(𝑛𝑡) | 𝑛 = 0, 1, 2, …} form a complete set of basis 
functions. That is, you don’t need any more functions to express every period 2𝜋 function 
as a linear combination. 

2 Competeness theorem 

Theorem: (Completeness theorem) 

A continuous periodic function 𝑓(𝑡) equals its Fourier series. 
Notes: 1. We will gloss over some analytic issues like convergence, they are not too hard in 
the current context. 
2. This theorem can be proved as a simple consequence of a theorem from analysis called 
the Stone-Weierstass theorem. We will not resort to that. 

3 Proof of the completeness theorem 

For concreteness we will assume 𝑓(𝑡) has period 2𝜋. The generalization to period 2𝐿 func-
tions only requires a change of variable. 
Before we start the proof proper, we need some preliminary notions. 

3.1 Convolution 

Assume 𝑓 and 𝑔 have period 2𝜋. The the convolution of 𝑓 with 𝑔 is defined by 

𝑓 ∗ 𝑔(𝑡) = ∫
𝜋

𝑓(𝑢)𝑔(𝑡 − 𝑢) 𝑑𝑢. 
−𝜋 

It is not hard to show that this is commutative, i.e., 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 . We do that at the end 
of this note. 
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3.2 Periodic delta function and its approximation 

The periodic 𝛿 function (or period 2𝜋 impulse train) is defined by 

̃𝛿(𝑡) = … + 𝛿(𝑡 + 4𝜋) + 𝛿(𝑡 + 2𝜋) + 𝛿(𝑡) + 𝛿(𝑡 − 2𝜋) + … 

̃Claim: If 𝑓(𝑡) is continuous and periodic (period 2𝜋) then 𝛿 ∗ 𝑓(𝑡) = 𝑓(𝑡). 
̃Proof: In the interval [−𝜋, 𝜋] the only non-zero term in the sum defining 𝛿(𝑡) is 𝛿(𝑡). So, 

𝜋 𝜋 
̃ ̃𝛿 ∗ 𝑓(𝑡) = ∫ 𝛿(𝑢)𝑓(𝑡 − 𝑢) 𝑑𝑢 = ∫ 𝛿(𝑢)𝑓(𝑡 − 𝑢) 𝑑𝑢 = 𝑓(𝑡). 

−𝜋 −𝜋 

̃𝛿(𝑡) is called the convolutional identity. 

Now, consider the function ℎ(𝑡) = (1 + cos(𝑡)).2 

(i) ℎ is periodic with period 2𝜋 

(ii) ℎ(0) = 1 

(iii) As 𝑡 goes from 0 to 𝜋 (or −𝜋) ℎ(𝑡) decreases to 0. 
Consequently for large 𝑘 the graph of ℎ(𝑡)𝑘 between −𝜋 and 𝜋 is nearly a spike of unit 
height at the origin. With this in mind we define 

𝑘 

ℎ𝑘(𝑡) = 𝑐𝑘 (
1 + cos(𝑡))2 

where 𝑐𝑘 is chosen so that ∫
𝜋 

ℎ𝑘(𝑡) 𝑑𝑡 = 1. 
−𝜋 

As 𝑘 grows the graph gets thinner and spikier (in order for this to have area 1 we must have 
𝑐𝑘 growing larger). Since the area is always 1, this shows 

̃lim ℎ𝑘(𝑡) = 𝛿(𝑡). 
𝑘→0 

Because of this limit, we say the sequence ℎ𝑘(𝑡) is an approximation of the (convolutional) 
identity. 
Notice that ℎ𝑘 is a linear combination of powers of cos(𝑡). Also recall that powers of cos(𝑡) 
can all be written as linear combinations of terms of the form sin(𝑛𝑡) and cos(𝑛𝑡). (You 
can easily show this using Euler’s formula.) Combining these statements, we have: 

ℎ𝑘 is a linear combination terms of the form sin(𝑛𝑡) and cos(𝑛𝑡). 

3.3 Proof of the completeness theorem 

Denote the Fourier series of 𝑓(𝑡) by 𝑓1(𝑡). We know 

𝑎0𝑓1(𝑡) = 2 
+ ∑ 𝑎𝑛 cos(𝑛𝑡) + ∑ 𝑏𝑛 sin(𝑛𝑡) 
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where 𝜋 𝜋 

𝑎𝑛 = 𝑓(𝑡) cos(𝑛𝑡) 𝑑𝑡, and 𝑏𝑛 = 𝑓(𝑡) sin(𝑛𝑡) 𝑑𝑡. 𝜋
2 ∫ 𝜋

2 ∫ 
−𝜋 −𝜋 

The orthogonality relations guarantee that 𝑓1 gives the same coefficients. That is, 
𝜋 𝜋 

𝑎𝑛 = 𝑓1(𝑡) cos(𝑛𝑡) 𝑑𝑡, and 𝑏𝑛 = 𝑓1(𝑡) sin(𝑛𝑡) 𝑑𝑡. 𝜋
2 ∫ 𝜋

2 ∫ 
−𝜋 −𝜋 

Our goal is to show that 𝑓(𝑡) = 𝑓1(𝑡), or equivalently 𝑔(𝑡) = 𝑓(𝑡) − 𝑓1(𝑡) = 0. To do this, 
first note that 

𝜋 𝜋 

∫ 𝑔(𝑡) sin(𝑛𝑡) 𝑑𝑡 = ∫ (𝑓(𝑡) − 𝑓1(𝑡)) sin(𝑛𝑡) 𝑑𝑡 = 𝑏𝑛 − 𝑏𝑛 = 0. 
−𝜋 −𝜋 

Likewise, 
𝜋 𝜋 

∫ 𝑔(𝑡) cos(𝑛𝑡) 𝑑𝑡 = ∫ (𝑓(𝑡) − 𝑓1(𝑡)) cos(𝑛𝑡) 𝑑𝑡 = 𝑎𝑛 − 𝑎𝑛 = 0. 
−𝜋 −𝜋 

Since ℎ𝑘(𝑡) is just a sum of sines and cosines, this shows 

ℎ𝑘 ∗ 𝑔(𝑡) = ∫
𝜋 

ℎ𝑘(𝑡 − 𝑢)𝑔(𝑢) 𝑑𝑢 = 0. 
−𝜋 

So, 
lim ℎ𝑘 ∗ 𝑔(𝑡) = 0.

𝑘→∞ 

But this limit is also ̃ ■𝛿 ∗ 𝑔(𝑡) = 𝑔(𝑡). That is, we have shown 𝑔(𝑡) = 0. 

4 Appendix: Proof that 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓 

This is just a change of variable: Assume 𝑓(𝑡) and 𝑔(𝑡) are period 2𝜋 functions. Then 

(𝑓 ∗ 𝑔)(𝑡) = ∫
𝜋

𝑓(𝑢)𝑔(𝑡 − 𝑢) 𝑑𝑢 
−𝜋

𝑡+𝜋 

= ∫ 𝑓(𝑡 − 𝑣)𝑔(𝑣) 𝑑𝑣 (change of variable 𝑢 = 𝑡 − 𝑣)
𝑡−𝜋 

= ∫
𝜋

𝑔(𝑣)𝑓(𝑡 − 𝑣) 𝑑𝑣 
−𝜋 

= (𝑔 ∗ 𝑓)(𝑡) ■. 

The third equality follows because, for periodic functions, the integrals over any full period 
are all the same. 
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