
ES.1803 Lab Exercise: Fourier Sound Analysis Solutions 
(30 points) 

In these problems we will use the ’FourierSound’ and ’BeatsWithSound’ applets to explore 
the connection between Fourier series and musical sounds. The applets give you a visual 
and aural connection to the mathematics. 
First open the ’FourierSound’ applet: 

https://web.mit.edu/jorloff/www/OCW-ES1803/fourierSound-jmo.html 

For sound quality, headphones are generally better than your laptop’s speakers. This is 
especially true for low frequency sine waves, which most laptop speakers have trouble with. 
Please start with the volume low and increase it slowly until you can hear the 
sounds comfortably. Loud pure sine waves are more damaging to your ears than 
other loud sounds. 
Play around with the applet –the help (click the button on the upper right of the window) 
will provide some guidance. Understand what the coefficients are telling you. They can be 
set to both rectangular and polar form: 

𝑎𝑛 cos (𝑛𝐿
𝜋 𝑡) + 𝑏𝑛 sin (𝑛𝐿

𝜋 𝑡) = 𝐴𝑛 cos (𝑛𝐿
𝜋 𝑡 − 𝜙𝑛) . 

Problem A (9: 3,3,3)In this part we will look at the harmonics of the triangle wave. Refresh 
the browser page to reset the applet. Then choose triangle wave from the sounds dropdown 
menu and set the frequency to 256 hz. Set the zoom to show about 20 ms of wave form. 
Look at and listen to the sound. 
(i) This is an even triangle wave with amplitude 1. Write down the general expression for 
the Fourier coefficients. (You can start with one of our known Fourier series.) Give the 
decimal expression for the DC term and the next 7 pairs of Fourier coefficients. 
Verify that the applet and theory agree. 
Solution: Let tri(𝑡) be the period 2𝜋 amplitude 𝜋. We know: 

𝜋 cos 𝑛𝑡 tri(𝑡) = 2 − 4 .𝜋 ∑ 𝑛2
𝑛 𝑜𝑑𝑑 

1 1 cos 𝑛𝑡 Scaling by 1/𝜋 to make it amplitute 1, we get the function: 𝜋 
tri(𝑡) = 2 − 

4 .𝜋2 
∑ 𝑛2

𝑛 𝑜𝑑𝑑 

Call the applet wave 𝑓(𝑡). It has fundamental frequency 200 hz = 400𝜋 radians/sec = 0.4𝜋 
radians/ms. So, 

1 1 cos(400𝜋𝑛𝑡) 𝑓(𝑡) = 𝜋 
tri(0.4𝜋𝑡) = 2 − 

4 .𝜋2 
∑ 𝑛2

𝑛 𝑜𝑑𝑑 

(Note: scaling the frequency does not change the Fourier coefficients.) Using a calculator, 
for the applet triangle wave, we get: 

𝑛 0 1 2 3 4 5 6 7 

0.5 −0.40528 0 −0.04503 0 −0.01621 0 −0.00827𝑎𝑛 

0 0 0 0 0 0 0𝑏𝑛 

1 

https://web.mit.edu/jorloff/www/OCW-ES1803/fourierSound-jmo.html
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The pairs (𝑎𝑛, 𝑏𝑛) given by the applet agree with those we computed. 
(ii) Set the applet to show both the original and reconstructed waveforms. How closely do 
the graphs agree? Play the ’original and then the ’reconstructed’ sounds. How do they 
compare? 

Now use the checkboxes to turn off the harmonics from 𝑛 = 6 to 𝑛 = 19. (You can do this 
quickly by shift-clicking on the 𝑛 = 6 checkbox.) How well do the original and reconstructed 
graphs agree in this case? Play both sounds. How do they compare. 
Solution: With all the harmonics, the graphs are essentially identical, as are the sounds. 
Using only the first 5 harmonics, the graphs are close, but not identical. Especially around 
the corner, the reconstructed graph is more rounded. On my system, the sounds are very 
close. The original is a little buzzier and brighter due to the presence of the higher pitched 
harmonics. 
(iii) Zoom in so that the graph shows about 8 ms of the waveform. You should see two full 
cycles of the 256 hz waveform. 
Now uncheck the coefficients for all harmonics except the fundamental, i.e., turn off the 
coefficients 2-19. (You can turn off harmonics 2-19 by shift-clicking on the checkbox for 
coefficient pair 2.) 

Play separately both the ’original sound’ and the ’reconstructed’ one with the harmonics 
turned off. How do the sounds compare? 

Why is the reconstructed sound not as loud? 

Add in the harmonics one at a time –start by turning on 2 then 3 etc. (After turning on a 
harmonic, give it a few seconds till you stop hearing two distinct pitches – your brain (or 
at least my brain) takes a while to do the Fourier synthesis!) After turning on a harmonic, 
listen to the original and reconstructed sounds. What happens to the graphs and the sounds 
as the harmonics are added? Does anything change when you add in the even numbered 
harmonics? 

Solution: The original sound is much ’buzzier’ than the first harmonic alone. The original 
wave is louder because it is the sum of the first harmonic and all the later harmonics, which 
add volume. 
As the harmonics are turned on the graph goes from the gradually undulating sine curve 
to the more angular triangle wave. Likewise, the sound goes from the pure sine wave to 
the buzzy triangle wave. The even harmonics have zero amplitude so they don’t change the 
graph or sound. 

Problem B (9: 3,3,3)In this part we will look at how the DC term and the phase affect the 
sound. Use the sounds menu to make a square wave. Set the frequency to 200 hz. Turn on 
(check) the coefficients for all the harmonics. (Again, shift clicking can speed this up.) 

(i) Make sure both gains are set to 0 db. Play the reconstructed wave form. Leave the sound 
playing and change the DC term (the 𝑎0 entry) by slowly moving the slider for that term. 
How does the reconstructed graph change? How does the reconstructed sound change? 

Solution: The reconstructed graph is shifted up. The sound doesn’t change until it starts 
‘clipping’ at the top rail. At this point the volume decreases because the amplitude is 
decreasing. It also become buzzier, indicating that the relative amplitude of the higher 



3 ES.1803 Lab Exercise: Fourier Sound Analysis Solutions 

harmonics has increased. 
(ii) Turn off harmonics 2-19 (leave 𝑛 = 0 and 𝑛 = 1 checked). Now repeat Part (i), by 
playing the reconstructed wave and slowly increasing the DC term. How does the sound 
change? 

Solution: The sound doesn’t change until it starts ‘clipping’ at the top rail. At this point 
it starts to sound buzzy, like a square wave. 
(iii) Turn on all the harmonics and reset the DC term to 0.0. Select ’amplitude-phase’. 
Now the coefficent pairs represent 𝐴𝑛 and 𝜙𝑛. (See the formula above Problem A.) Give the 
formulas for 𝐴𝑛 and 𝜙𝑛 in terms of 𝑎𝑛 and 𝑏𝑛. (Do this for a general Fourier series, not 
just for the square wave.) 

Solution: This is standard amplitude phase form: 

𝐴𝑛 = |𝑎𝑛+𝑖𝑏𝑛| = √𝑎2𝑛 + 𝑏𝑛2 and 𝜙𝑛 = Arg(𝑎𝑛+𝑖𝑏𝑛) = tan−1 (𝑎
𝑏𝑛

𝑛
) , in the correct quadrant. 

(iv) Reset the 200 hz. square wave. Set both gains to -3.0 db. (This will prevent clipping 
when we change the phase). Select amplitude-phase for the coefficient pairs. Play the 
reconstructed sound. Leave the sound playing and randomly adjust the phase (𝜙𝑛) sliders. 
How does the reconstructed graph change? How does the reconstructed sound change? 

Solution: The graph is completely different, but the sound doesn’t change. Our ears do 
not hear phase differences between the Fourier components. 

Problem C (12: 3,3,3,3)In this question we’ll look at the phenomenon of beats. 
Open the Beats applet and get familiar with it. 

https://web.mit.edu/jorloff/www/OCW-ES1803/beatsWithSound.html 

The help will explain all the controls. Here are a few pointers. 
1. The ’mixed wave’ is the average of two sine waves of different frequencies. The frequencies 
are controlled by the sliders marked ‘freq 1’ and ‘freq 2’. 
2. The little triangles at the end of the frequency sliders can be used to fine tune the 
frequency. Clicking on the triangles raises or lowers the frequency by 0.1 hz. Shift-clicking 
increments it by 1 hz. (Option/alt clicking increments it by 10 hz.) 

(i) Configure the applet by: 
1. Set Frequency 1 to 390 hz. and Frequency 2 to 400 hz. 
2. Set the zoom so that the graph window shows about 250 ms of waveform. 
3. Set the applet to show only the mix waveform. 
Play in order: Sound 1; Sound 2; both together. 
When both sounds are played together you should hear a fairly rapid set of ’beats’. (If not 
go back and try again.) 

Sketch what you see and explain why this explains the beats you heard. 
Solution: The sound has a constant pitch, but the volume fades in and out. The picture 
shows a high frequency sine wave with its amplitude oscillating inside an envelope shaped 
like a low frequency sine wave. On the graph we can measure one fade in/fadeout cycle 
takes 100 ms, i.e., there are 10 cycles per second. 

https://web.mit.edu/jorloff/www/OCW-ES1803/beatsWithSound.html
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(ii) The arithmetic key to beats is the trig identity 

sin(𝑎𝑡) + sin(𝑏𝑡) = cos ((𝑎 − 𝑏)𝑡 sin ((𝑎 + 𝑏)𝑡 ) ⋅ ) . 2 2 2 

For 𝑎 and 𝑏 close together, (𝑎−𝑏)/2 is small and (𝑎+𝑏)/2 is almost the same as 𝑎 or 𝑏. This 
says the sum of the two sine waves looks like a high frequency sine wave (sin((𝑎 + 𝑏)𝑡/2)) 
with slowly changing amplitude (cos((𝑎 − 𝑏)𝑡/2)). 
Work this out in the case 𝑎 = 390 ⋅ 2𝜋 and 𝑏 = 400 ⋅ 2𝜋 and give the frequency of the beats. 
Does this match what you see on the screen? 

sin(390 ⋅ 2𝜋 𝑡) + sin(400 ⋅ 2𝜋 𝑡) Solution: The applet shows the average of the two sine waves, i.e., 2
(with 𝑡 in seconds). The trig formula given says the mixed wave is 

sin(390 ⋅ 2𝜋 𝑡) + sin(400 ⋅ 2𝜋 𝑡) = cos(5 ⋅ 2𝜋 𝑡) sin(395 ⋅ 2𝜋 𝑡). 2 

Since cos(5 ⋅ 2𝜋 𝑡) has frequency 5 cycles/second, it goes to zero 10 times per second. So, 
the sound fades 10 times per second, i.e., the beats have a frequency of 10 cycles/second. 
This matches what you hear and the graph of the mixed sound. (You can easily measure 
the beat period from the graph –it is 100 ms.) 

(iii) Another explanation for beats comes by looking at the graphs of the individual sounds. 
Set the applet as in Part (ii). Except: show sound 1 and sound 2 (but not mix), and zoom 
so that the graph window shows about 50 ms of waveform. Sketch what you see and use it 
to explain the beats. 
Solution: The time axis is in milliseconds. At time 𝑡 = 0 the two graphs are fully in phase 
and so the sounds add constructively. The slightly different frequencies causes them to drift 
apart. At 50 ms they are fully out of phase and the sounds add destructively. At 100 ms 
they will be back fully in phase. The whole beat cycle takes 100 ms. That is, it happens 
10 times per second. 

Solid blue: sin(390 ⋅ 2𝜋 ⋅ 𝑡), dashed black: sin(400 ⋅ 2𝜋 ⋅ 𝑡) (𝑡 in seconds) 

(iv) Set the applet so that ‘show mix’ is on and ‘show 1’ and ‘show 2’ are off. Set the 
frequencies to 399 hz. and 400 hz. You might want to zoom out so about 3000 ms (3 
seconds) are shown to see the beats on the screen. How does the quality of the mixed sound 



5 ES.1803 Lab Exercise: Fourier Sound Analysis Solutions 

differ from that in Part (i)? What if you set the frequencies to 399.8 hz (use the fine tuning 
arrows) and 400 hz? 

Solution: The beats have a much lower frequency fading in and out once per second. In 
terms of the analysis in Part (ii) the slowly varying amplitude is cos(0.5 ⋅ 2𝜋 𝑡). This has 
period 2 seconds, so it goes to zero once per second, which is the frequency of the beats. 
At 399.8 hz and 400 hz. The slowly varying amplitude has period 10 seconds, so the beats 
have period 5 seconds. 
(v) Now set the frequencies to 310 hz. and 400 hz. When you play both sounds together 
you shouldn’t hear any beats, but instead two distinct tones like a train whistle. 
There is no question in Part (v). 

The following are only for fun. 

Problem D (for fun) 
(i) In the Fourier sound applet use the scale menu to connect notes and frequencies. 
Notice that an octave is a doubling of the frequency. That is, doubling the frequency 
results in a different pitch but the same note. 
(ii) In the Fourier Sound applet see that the different waveforms of the same frequency 
give the same note. 
(iii) In the Fourier Sound applet listen to a 256 hz. rectified sine wave. (You may 
need to use the shift arrow to get the slider to 256.) Now remove the fundamental 
frequency (turn off coefficient pair 1). To make the sounds have roughly equal loudness 
set the original wave gain to about −2.0 db and the reconstructed wave gain to 2.0 
db.. 
Toggle between playing the original and reconstructed wave. Relative to the original 
pitch, what is the pitch of the reconstructed sound without the fundamental? When 
you toggle, give each sound a moment for your ears to adjust to the change. 
Solution: This is dependent on both ears and audio systems: About 50% of peo-
ple will hear the same pitch. The reason is that they have the same fundamental 
frequency, i.e, the higher harmonic frequencies are multiples of 25k hz. Other ears, 
will hear the separate frequencies as a tone one octave up from the original and a 
collection of higher tones. 
(iv) In the Fourier Sound applet, zoom in on the discontinuous sawtooth wave and 
see Gibbs’ phenomenon occurring at the jumps. Turn off the harmonics starting from 
coefficient 19 to see the overshoot move away from the jump. Do the same thing with 
the square wave. 

End of Fourier Sound solutions. 
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