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Notation 

To keep the notation simple, we will work with period 2𝜋 functions. Also, we will assume 
that any jump discontinuties happen at 𝑡 = 0. Generalizing our arguments to other periods 
or points of discontinuity is reasonably straightforward. 

Truncated Fourier series 

Suppose 𝑓(𝑡) is a period 2𝜋 function with Fourier series 

𝑎0
∞ ∞

𝑓(𝑡) = 2 
+ ∑ 𝑎𝑛 cos(𝑛𝑡) + ∑ 𝑏𝑛 sin(𝑛𝑡).

𝑛=1 𝑛=1 

The truncated Fourier series for 𝑓 is defined by summing only a finite number of terms. 
That is, it is defined by 

𝑎0 
𝑁 𝑁 

𝑆𝑁,𝑓 (𝑡) = 2 
+ ∑ 𝑎𝑛 cos(𝑛𝑡) + ∑ 𝑏𝑛 sin(𝑛𝑡).

𝑛=1 𝑛=1 

Gibbs’ Phenonemon says that the truncated Fourier series near a jump discontinuity over-
shoots the jump by about 9% of the size of the jump. 

Gibbs’ phenomenon for a square wave 

for −𝜋 < 𝑡 < 0 We start with the key example of a period 2𝜋 square wave: 𝑓1(𝑡) = {0 

1 for 0 < 𝑡 < 𝜋. 

Since 𝑓1(𝑡) = 2
1 (1 + sq(𝑡)), where sq(𝑡) is our usual odd, period 2𝜋 square wave, we have 

1 sin(𝑛𝑡)𝑓1(𝑡) = 2 + 2 (1)𝜋 ∑ 𝑛 𝑛 odd 

The trunctated Fourier series is given by 

1 + … + 
sin((2𝑁 − 1)𝑡) 𝑆2𝑁−1,𝑓1

(𝑡) = 2 
+ 𝜋

2 (sin(𝑡) + 
sin(3𝑡) ) (2)𝑡 2𝑁 − 1 

Gibbs’ phenomenon for 𝑓1(𝑡): The maximum value of 𝑆2𝑁−1,𝑓1
(𝑡) always overshoots 

𝑓1(𝑡) by about 9%. That is, the maximum value is about 1.089 and never disappears, 
no matter how large 𝑁 becomes. As 𝑁 goes to infinity, the point where the maximum 
overshoot occurs goes to the jump discontinuity. 
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The figures below show 𝑓1(𝑡) and its truncated Fourier series for several values of 𝑁 . Notice 
that the overshoot moves towards the jump, but stays at about 1.09 (or −0.09 on the 
bottom). 

t−π π

1
1.09

−0.09

Sum up to 𝑛 = 1 

t−π π

1
1.09

−0.09

Sum up to 𝑛 = 3 

t−π π

1
1.09

−0.09

Sum up to 𝑛 = 9 

t−π π

1
1.09

−0.09

Sum up to 𝑛 = 21 

The proof of Gibbs’ phenomenon for 𝑓1(𝑡) is an elaborate and somewhat tricky calculus 
exercise. We’ll show it in a number of steps.

1 sin(2𝑁𝑡) Step 1: We claim 𝑆′ (𝑡) = ⋅ .2𝑁−1,𝑓1 𝜋 sin(𝑡) 

Proof: Differentiating Equation 2, we get 

𝑆′ (𝑡) = 𝜋
2 (cos(𝑡) + cos(3𝑡) + … + cos((2𝑁 − 1)𝑡)). 2𝑁−1,𝑓1 

Recall the formulas for cos(𝑡) and sin(𝑡) in terms of complex exponentials: 

𝑒𝑖𝑡 + 𝑒−𝑖𝑡 𝑒𝑖𝑡 − 𝑒−𝑖𝑡 

cos(𝑡) = , sin(𝑡) = .2 2𝑖 
Use these to rewrite the formula for 𝑆′ :2𝑁−1,𝑓1 

𝜋 
(𝑒(−2𝑁+1)𝑖𝑡 + 𝑒(−2𝑁+3)𝑖𝑡 + … 𝑒(2𝑁−3)𝑖𝑡 + 𝑒(2𝑁−1)𝑖𝑡 2𝑆′ (𝑡) = ) . 2𝑁−1,𝑓1 2 

This is a geometric series with ratio 𝑒2𝑖𝑡. It has sum 

𝑒(−2𝑁+1)𝑖𝑡 − 𝑒(2𝑁+1)𝑖𝑡 

𝑆′ (𝑡) = .2𝑁−1,𝑓1 𝜋
1 ⋅ 1 − 𝑒2𝑖𝑡 

Multiply top and bottom by 𝑒−𝑖𝑡 and use the formula for sin(𝑡) in terms of complex expo-
nentials to get 

1 𝑒(−2𝑁)𝑖𝑡 − 𝑒(2𝑁)𝑖𝑡 1 sin(2𝑁𝑡) 𝑆′ (𝑡) = ⋅ = ⋅ . QED2𝑁−1,𝑓1 𝜋 𝑒−𝑖𝑡 − 𝑒𝑖𝑡 𝜋 sin(𝑡) 

Step 2: Find the first positive maximum of 𝑆2𝑁−1,𝑓1
(𝑡). 

𝜋 The formula for 𝑆𝑁
′ (𝑡) shows that 𝑆2𝑁−1,𝑓1

(𝑡) has critical points at multiples of So,2𝑁 
.

𝜋 the first positive critical point is at 𝑡 = 2𝑁 
. 

Since, 𝑆2𝑁−1,𝑓1
(0) = 2

1 and all the terms in the sum for 𝑆2𝑁−1,𝑓1
(𝜋/2𝑁) are positive we 

conclude that 𝑡 = 𝜋/2𝑁 is a local maximum (it is, in fact, the absolute maximum). 
(Alternatively, you could use the second derivative to show this is a relative maximum. Or 
you could use L’Hospital’s rule to see that 𝑆𝑁

′ (0) = 2𝑁 > 0, which implies that 𝑆2𝑁−1,𝑓1
(𝑡)

is rising towards a maximum.) 
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Step 3: Estimate the maximum value of 𝑆2𝑁−1,𝑓1
(𝑡), i.e., estimate 𝑆2𝑁−1,𝑓1

(𝜋/2𝑁). 
First we manipulate the series for 𝑆2𝑁−1,𝑓1

(𝜋/2𝑁): 

( 
𝜋 1 

𝜋 (sin(𝜋/2𝑁) + 
sin(3𝜋/2𝑁) + … + 

sin((2𝑁 − 1)𝜋/2𝑁) 𝑆2𝑁−1,𝑓1 2𝑁 ) = 2 + 2 
1 3 2𝑁 − 1 

) 

1 
𝑁
𝜋 (sin(𝜋/2𝑁) + 

sin(3𝜋/2𝑁) + … + 
sin((2𝑁 − 1)𝜋/2𝑁) = 2 + 1 ⋅ )𝜋 𝜋/2𝑁 3𝜋/2𝑁 (2𝑁 − 1)𝜋/2𝑁 

This last is a Riemman sum (using midpoints) for 

1 𝜋 sin(𝑡) 𝜋 
2 

+ 
1 𝑑𝑡, with Δ𝑡 =𝜋 ∫ 𝑡 𝑁 . 

0 

Since Δ𝑡 → 0 as 𝑁 → ∞ we get 

𝜋 

( 𝜋 1 sin(𝑡)lim 2 
+ 

1 𝑑𝑡. 
𝑁→∞ 

𝑆2𝑁−1,𝑓1 2𝑁 ) = 𝜋 ∫ 𝑡 0 

𝜋 

( 
𝜋 sin(𝑡)

2 
+ 

1 𝑑𝑡.So, 𝑆2𝑁−1,𝑓1 2𝑁 
) ≈ 

1 
𝜋 

∫ 𝑡 0 

All that’s left is to estimate the value of the integral. For this we integrate the power series 
sin(𝑡)for . We have 𝑡 

sin(𝑡) = 1 − 
𝑡
3!
2 

+ 
𝑡
5!
4 

− 
𝑡6 

+ … 𝑡 7! 
Which gives 

𝜋 

( 
𝜋 sin(𝑡) 1 𝜋5

𝑆2𝑁−1,𝑓1 2𝑁 ) ≈ 
1
2 + 1 𝑑𝑡 = 2 + 𝜋

1 (𝜋 − 
𝜋3 

5! − 
𝜋7 

+ …) 𝜋 ∫ 𝑡 3 ⋅ 3! + 5 ⋅ 7 ⋅ 7!0 

This series converges very rapidly and, after six terms, we get the value 1.089 correct to 3 
decimal places. 
We have seen that, as 𝑁 gets large, the maximum value of 𝑆2𝑁−1,𝑓1

(𝑡) becomes approxi-
mately 1.089. That is, it overshoots the correct value by about 0.089, i.e., by about 9% of 
the jump from 0 to 1. 

Gibbs’ phenomenon for a function with jump discontinuities 

Now let 𝑓(𝑡) be a piecewise smooth, period 2𝜋 function with jump discontinuties. To avoid 
too much notation, let’s assume that there is a jump discontinuity of height ℎ at 𝑡 = 0. 
Gibbs’ phenomenon: At 𝑡 = 𝜋/2𝑁 , the truncated Fourier series overshoot the correct 
value of 𝑓 by about 0.089 ℎ. That is, by about 9% of the jump. In symbols, 

𝑆2𝑁−1,𝑓 (2𝑁
𝜋 ) ≈ 𝑓 (2𝑁

𝜋 ) + 0.089 ℎ 

Proof: Let 𝑔(𝑡) = 𝑓(𝑡) − ℎ 𝑓1(𝑡). Since 𝑓(𝑡) has a jump of ℎ at 𝑡 = 0 and −ℎ 𝑓1(𝑡) has a 
jump of −ℎ, 𝑔(𝑡) has no jump, i.e., it’s continuous at 𝑡 = 0. 
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Since 𝑔(𝑡) is continuous, at 𝑡 = 0, its Fourier series converges to 𝑔(0). That is 𝑆𝑁,𝑔(𝑡) ≈ 𝑔(𝑡), 
for 𝑡 near 0. 
Now 𝑓(𝑡) = 𝑔(𝑡) + ℎ 𝑓1(𝑡). So, 

( 
𝜋 𝑆2𝑁−1,𝑓 (2𝑁

𝜋 ) = 𝑆2𝑁−1,𝑔 (2𝑁
𝜋 ) + ℎ𝑆2𝑁−1,𝑓1 2𝑁 

) 

≈ 𝑔 (2𝑁
𝜋 ) + 1.089 ℎ (by our known overshoot for 𝑓1) 

= 𝑓 (2𝑁
𝜋 ) − ℎ 𝑓1 (2𝑁

𝜋 ) + 1.089 ℎ (by the definition of 𝑔(𝑡)) 

= 𝑓 (2𝑁
𝜋 ) − ℎ + 1.089 ℎ (since 𝑓1 ( 

𝜋 
2𝑁 ) = 1) 

= 𝑓 (2𝑁
𝜋 ) + 0.089 ℎ. ■ 
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