18.03 Gibbs’ Phenomenon
Jeremy Orloff

Notation

To keep the notation simple, we will work with period 27 functions. Also, we will assume
that any jump discontinuties happen at t = 0. Generalizing our arguments to other periods
or points of discontinuity is reasonably straightforward.

Truncated Fourier series

Suppose f(t) is a period 27 function with Fourier series

f(t) = % + i a,, cos(nt) + i b,, sin(nt).
n=1 n=1

The truncated Fourier series for f is defined by summing only a finite number of terms.
That is, it is defined by

N N
Sn () = % + Z a,, cos(nt) + Z b,, sin(nt).
n=1 n=1

Gibbs’ Phenonemon says that the truncated Fourier series near a jump discontinuity over-
shoots the jump by about 9% of the size of the jump.

Gibbs’ phenomenon for a square wave

0 for—7m<t<O

We start with the key example of a period 27 square wave: f;(t) =
1 forO0<t<m.

1
Since f;(t) = 3 (1 +sq(t)), where sq(t) is our usual odd, period 27 square wave, we have
1 2 sin(nt)
H)==-+2= 1
fl)=5+2 3 )
n odd

The trunctated Fourier series is given by

9 sin(3t) sin((2N — 1)t) ) @)

1 :
Son-1,7,(t) = 5t (Sln(t) L Y VA

Gibbs’ phenomenon for f(t): The maximum value of S,y_; ¢ (t) always overshoots
f1(t) by about 9%. That is, the maximum value is about 1.089 and never disappears,
no matter how large N becomes. As N goes to infinity, the point where the maximum
overshoot occurs goes to the jump discontinuity.
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The figures below show f; () and its truncated Fourier series for several values of N. Notice
that the overshoot moves towards the jump, but stays at about 1.09 (or —0.09 on the
bottom).

~—0.09 ™ —0.09
Sumup ton =1 Sum up ton =3 Sum up ton =9 Sum up to n = 21

The proof of Gibbs’ phenomenon for f;(¢) is an elaborate and somewhat tricky calculus
exercise. We'll show it in a number of steps.

1 sin(2Nt)

Step 1: We claim S/ t)=— ——
ep e claim 2N717f1( ) T s
Proof: Differentiating Equation 2, we get

Son-—1.7,(t) = %(cos(t) + cos(3t) + ... + cos((2N — 1)t)).

Recall the formulas for cos(t) and sin(t) in terms of complex exponentials:

eit 4 et it _ it
_— sin(t) = ———
2 (*) 21

Use these to rewrite the formula for S N-1,f,:

cos(t) =

9 (e(2N+1)it+e(2N+3)it+me(2N3)it+e(2Nl)it)

on—1,r, (8) = p 5

This is a geometric series with ratio e?¥. It has sum

1 e(2N+1)it _ ,(2N+1)it

/ _
2N—1,f, (t) = T ’ 1 — e2it

Multiply top and bottom by e~% and use the formula for sin(t) in terms of complex expo-

nentials to get
Tl W TC)

et — eit 7w sin(t)

3=

é]\[717‘701 <t> =

Step 2: Find the first positive maximum of Syy_y ¢ (2).

The formula for Sjy(¢) shows that Syy_; ; () has critical points at multiples of % So,

s s e ™
the first positive critical point is at ¢t = N
Since, Syn_1,,(0) = 1 and all the terms in the sum for Son—1,f,(7/2N) are positive we
conclude that t = /2N is a local maximum (it is, in fact, the absolute maximum).

(Alternatively, you could use the second derivative to show this is a relative maximum. Or
you could use L’Hospital’s rule to see that S;(0) = 2N > 0, which implies that Syy_;  (?)
is rising towards a maximum.)
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Step 3: Estimate the maximum value of Syy_; ¢ (), i.e., estimate Syy_; ; (7/2N).

First we manipulate the series for Syy_; ; (7/2N):

7\ 1 2 (sin(7/2N) sin(37/2N) sin((2N — 1)7/2N)
SaN-1.5, (ﬁ) _2+7r( 1 - 3 T 2N —1 )
1 1 =« (sin(r/2N) sin(37/2N) sin((2N — 1)7/2N)
2t r N ( 7/2N 3r/2N (2N — 1) /2N )

This last is a Riemman sum (using midpoints) for

1 1 [Tsin(t) , 77
-+ — dt th At = —.
2 T /0 ¢ o N

Since At — 0 as N — oo we get
, ™ 1 1 [7sin(t)
N 2N, <2N> 27 77/0 P

1 1 [Tsin(t
SO, SZN—l,f1< T )% "‘/ Sln()dt
0

2N 2 7 t
All that’s left is to estimate the value of the integral. For this we integrate the power series
in(t
for sin ) We have
sin(t) 2t 48
=1l—=4+=—=+4..
i TR

Which gives

g (71') 1+1/”sin(t)dt 1+1 73 N o m N

— |~ -+ — =—+4+—|m— —
NLANON) T2 T )yt 2 7 3.3 5.5 7.7
This series converges very rapidly and, after six terms, we get the value 1.089 correct to 3
decimal places.

We have seen that, as N gets large, the maximum value of S,y_; ; () becomes approxi-
mately 1.089. That is, it overshoots the correct value by about 0.089, i.e., by about 9% of
the jump from 0 to 1.

Gibbs’ phenomenon for a function with jump discontinuities

Now let f(t) be a piecewise smooth, period 27 function with jump discontinuties. To avoid
too much notation, let’s assume that there is a jump discontinuity of height h at t = 0.

Gibbs’ phenomenon: At t = /2N, the truncated Fourier series overshoot the correct
value of f by about 0.089 h. That is, by about 9% of the jump. In symbols,

Son-1,f (%) ~ f (%) 4+ 0.089 h

Proof: Let g(t) = f(t) — h f,(t). Since f(t) has a jump of h at t = 0 and —h f,(¢) has a
jump of —h, ¢g(t) has no jump, i.e., it’s continuous at t = 0.
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Since g(t) is continuous, at t = 0, its Fourier series converges to g(0). That is Sy ,(t) ~ g(t),
for t near 0.

Now f(t) = g(t) +h fy(¢). So,

S (55) = Sov () 15 (55

~ g (%) + 1.089 h (by our known overshoot for f;)
—f (%) “hf (%) +1.089% (by the definition of g(t))

—f (%) — h+1.089h (since f, (%) =1)

:f(%) +0.089 h. =
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