
18.03 The Heat Equation 
Jeremy Orloff 

1 Introduction 

The goal in this note is to derive the heat equation from Newton’s law of cooling. We can 
get most of the way using just mathematics. The final piece of the puzzle requires the use 
of an empirical principle of heat flow. 
In outline: First we’ll set up the problem of heat flow in a bar. Then will discretize the 
problem and analyze 𝑛 × 𝑛 systems of equations based on Newton’s law of cooling. Finally, 
we’ll let the discrete stepsize go to 0 to get the continuous heat equation as the limit of the 
discretized system. 

2 Notation 

We have a small notational conflict to resolve. In discrete systems, we usually represent 
𝑣1 

components of vectors with subscripts, e.g., v = ⎡⎢𝑣2⎥⎤ . While for continuous systems, we 

⎣𝑣3⎦ 
use function notation, e.g., 𝑢(𝑥, 𝑡). Since we are going to take the limit of a discrete system 
to get a continuous one, we need to make some notational choices. For eigenvectors of our 
discrete system, we’ll use functional notation with square brackets, e.g., 

v[1] 
v = ⎢⎡v[2]⎥⎤ . 

⎣v[3]⎦ 

For the functions giving the temperature in pieces of our discrete system, we’ll use sub-
scripts, e.g. 

𝑢1(𝑡) 
u(𝑡) = ⎡⎢𝑢2(𝑡)⎥⎤ . 

⎣𝑢3(𝑡)⎦ 

It’s not a perfect notational system, but it will suffice for our purposes 

3 Continuous heat equation 

Suppose we have a heated bar where the temperature varies both in time and in position 
along the bar. To be specific, we assume we have a rod of length 𝐿, which is thin enough that 
the temperature doesn’t vary in the vertical direction. So we can describe the temperature 
of the bar by a function of two variables 𝑢(𝑥, 𝑡), which gives the temperature at time 𝑡 at 
position 𝑥. 
We will assume that the sides of the bar are insulated, so that no heat passes through them. 
We will also assume that the ends of the bar are kept in an ice bath at 0∘. This is illustrated 
in the figure below. 
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𝑥 0 𝐿 

0∘ 0∘ 

Heated rod with temperature varying by position and time: 𝑢(𝑥, 𝑡). 
In ES.1803, we have seen that this is modeled by the heat equation with boundary condi-
tions: 

PDE ∶ 𝑢𝑡(𝑥, 𝑡) = 𝑘0𝑢𝑥𝑥(𝑥, 𝑡) 

BC ∶ 𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0. 
(1) 

(2) 

We have also seen that this has modal solutions: 

𝐿 
) 𝑒−(𝑚𝜋/𝐿)2 𝑘0𝑡.𝑢𝑚(𝑥, 𝑡) = sin (𝑚𝜋𝑥 (3) 

4 Discrete heat equation 

As in previous examples in the course, let’s divide the rod into sections and assume the 
temperature is uniform in each section. 

𝑥 𝑥0 𝑥1 𝑥2 𝑥𝑛 𝑥𝑛+1 

⋯ 

0 𝐿 

0∘ 0∘ 

Heated rod divided into pieces. 

Let’s call the temperature in the 𝑗th section 𝑢𝑗(𝑡). Newton’s law of cooling gives 

𝑢′
𝑗(𝑡) = −𝑘(𝑢𝑗 − 𝑢𝑗−1) − 𝑘(𝑢𝑗 − 𝑢𝑗+1) = 𝑘𝑢𝑗−1 − 2𝑘𝑢𝑗 + 𝑘𝑢𝑗+1 (4) 

Taking into account the ice baths, we get a system of differential equations. (We show the 
coefficient matrix for 𝑛 = 4. It follows the same pattern for other values of 𝑛.) 

𝑢1(𝑡) −2𝑘 𝑘 0 0
⎡𝑢2(𝑡)⎤ ⎡ 𝑘 −2𝑘 𝑘 0 ⎤ 

u ′(𝑡) = 𝐴u, where u(𝑡) = ⎢ ⎥ , and (for 𝑛 = 4) 𝐴 = ⎢ ⎥⎢ ⋮ ⎥ ⎢ 0 𝑘 −2𝑘 𝑘 ⎥ 
⎣𝑢𝑛(𝑡)⎦ ⎣ 0 0 𝑘 −2𝑘⎦ 

We’ll call this equation the discrete heat equation because we’ve divided the bar into discrete 
chunks. 
For future reference, note the way we divided the bar into sections: The 𝑛 middle pieces 
all have width Δ𝑥 = 𝐿/(𝑛 + 1) and centers 𝑥𝑗 = 𝑗Δ𝑥 and the two end pieces (in the ice 
baths) are each half that width. 
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4.1 Eigenvalues and eigenvectors of the matrix A 

We know that to solve the discrete heat equation, we must find eigenvalues and eigenvectors 
of the coefficient matrix 𝐴. These are given by 

Theorem: Let 𝑚𝜋 𝜃𝑚 = and 𝜆𝑚 = −2𝑘 + 2𝑘 cos(𝜃𝑚).𝑛 + 1 

For each 𝑚 = 1, 2, … , 𝑛, 𝐴 has eigenvalues 𝜆𝑚, and corresponding eigenvectors 

sin(𝜃𝑚)
⎡sin(2𝜃𝑚)⎤ 

vm = ⎢ ⎥⎢ ⋮ ⎥ 
⎣sin(𝑛𝜃𝑚)⎦ 

Proof number 1: This can be checked directly using the trigonometric identity 

sin((𝑘 − 1)𝜃) + sin((𝑘 + 1)𝜃) = 2 cos(𝜃) sin(𝑘𝜃) 

The exact value of 𝜃𝑚 only comes into play for the 𝑛th entry in the eigenvector. For that 
entry, the eigenequation takes the form 

sin((𝑛 − 1)𝜃𝑚) − 2 sin(𝑛𝜃𝑚) = (−2 + 2 cos(𝜃𝑚)) sin(𝑛𝜃𝑚) 

This follows from the previous trig identity with 𝑘 = 𝑛 because, for this particular 𝜃𝑚, we 
have sin((𝑛 + 1)𝜃𝑚) = 0. 
This proof doesn’t give much insight into how we might discover these eigenpairs. The 
entire next section will be devoted to that. 

4.2 Proof number 2: Derivation of eigenpairs via a boundary value prob-
lem 

The presentation will be a little cleaner if we remove the diagonal from 𝐴. We write
𝐴 = −2𝑘𝐼 + 𝑘𝐵. For example when 𝑛 = 4: 

0 1 0 0 −2𝑘 𝑘 0 0 1 0 0 0 0 1 0 0
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤1 0 1 0 𝑘 −2𝑘 𝑘 0 0 1 0 0 1 0 1 0𝐵 = ⎢ ⎥ , so 𝐴 = ⎢ ⎥ = −2𝑘 ⎢ ⎥+𝑘 ⎢ ⎥⎢0 1 0 1⎥ ⎢ 0 𝑘 −2𝑘 𝑘 ⎥ ⎢0 0 1 0⎥ ⎢0 1 0 1⎥ 
⎣0 0 1 0⎦ ⎣ 0 0 𝑘 −2𝑘⎦ ⎣0 0 0 1⎦ ⎣0 0 1 0⎦ 

If v is an eigenvector of 𝐵 with eienvalue 𝜆, then the eigenequation 𝐵v = 𝜆v implies 

𝐴v = (−2𝑘𝐼 + 𝑘𝐵)v = (−2𝑘 + 𝑘𝜆)v. 

That is, v is an eigenvector of 𝐴 with eigenvalue −2𝑘 + 𝑘𝜆. 
With this in mind we set about deriving the eigenvalues and eigenvectors of 𝐵. Let v be 

v[1]
⎡v[2]⎤ 

an eigenvector of 𝐵. Write: v = ⎢ ⎥.⎢ ⋮ ⎥ 
⎣v[𝑛]⎦ 
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The eigenequation 𝐵v = 𝜆v can be written out as 

v[2] = 𝜆v[1] 
v[1] + v[3] = 𝜆v[2] 
v[2] + v[4] = 𝜆v[3]

⋯ 

v[𝑛 − 2] + v[𝑛] = 𝜆v[𝑛 − 1] 
v[𝑛 − 1] = 𝜆v[𝑛] 

Except for the first and last equations, all these equations look the same. We can make all 
the equations look the same by introducing v[0] and v[𝑛 + 1]: 

v[0] + v[2] = 𝜆v[1] 
v[1] + v[3] = 𝜆v[2] 
v[2] + v[4] = 𝜆v[3]

⋯ 

v[𝑛 − 2] + v[𝑛] = 𝜆v[𝑛 − 1] 
v[𝑛 − 1] + v[𝑛 + 1] = 𝜆v[𝑛] 

To make sure this doesn’t change anything, we must require that 

v[0] = 0 and v[𝑛 + 1] = 0. (BC) 

The equations above have the form 

v[𝑗 − 1] + v[𝑗 + 1] = 𝜆v[𝑗] for 𝑗 = 1, 2, … 𝑛 (5) 

We rewrite them as 

v[𝑗 − 1] − 𝜆v[𝑗] + v[𝑗 + 1] = 0 for 𝑗 = 1, 2, … 𝑛 (6) 

This is called a difference equation for the v. 
The conditions (BC) are called boundary conditions. The name boundary conditions in-
dicates that they are on the boundary or ends of the vector. Physically, v[0] and v[𝑛 + 1] 
correspond to the pieces in ice baths at the end of the rod in positions 𝑥0 and 𝑥𝑛+1 respec-
tively. 
To summarize: we’ve recast the eigenequation as a difference equation with boundary con-
ditions. 

4.2.1 Solving the difference equation 

Our first goal will be to solve the difference equation in Equation 6 without considering 
the boundary conditions. For this, we use our usual method of optimism. In the case 
of difference equations, we guess solutions of the form v[𝑗] = 𝑎𝑗, where 𝑎 is a constant. 
Substituting this into Equation 6, we get 

𝑎𝑗−1 − 𝜆𝑎𝑗 + 𝑎𝑗+1 = 0. 
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Factoring out 𝑎𝑗−1, we get the characteristic equation 

1 − 𝜆𝑎 + 𝑎2 = 0. 

𝜆 ± 
√

𝜆2 − 4 The quadratic formula now yields 𝑎 = By reversing the order under the square 2 
root, we can write this in the form 

𝜆 
√

4 − 𝜆2
𝑎 = 2 

± 𝑖 2 
. 

22 √
4 − 𝜆2 

Now comes a clever trick: we notice that (𝜆 + ( ) = 1. So, for 𝜆 ≤ 2, we can2 ) 2 
choose 𝜃 so that 

𝜆 
√

4 − 𝜆2 
= cos(𝜃), = sin(𝜃), and 𝑎 = cos(𝜃) ± 𝑖 sin(𝜃) = 𝑒±𝑖𝜃. (7)2 2 

Thus, we have found the following two modal solutions to the difference equation 6: 

v1[𝑗] = (𝑒𝑖𝜃)𝑗 = 𝑒𝑖𝑗𝜃, v2[𝑗] = (𝑒−𝑖𝜃)𝑗 = 𝑒−𝑖𝑗𝜃. 

The general solution to the difference equation is a superposition of the two modal solutions 

v[𝑗] = 𝑐1v1[𝑗] + 𝑐2v2[𝑗] = 𝑐1𝑒𝑖𝑗𝜃 + 𝑐2𝑒−𝑖𝑗𝜃 for 𝑗 = … − 2, −1, 0, 1, 2, … 

(We won’t go into it, but, since the characteristic equation is second-order, the space of 
solutions to the difference equation is two dimensional.) 

4.2.2 Satisfying the boundary conditions 

Notice that we solved the difference equation 6 for every value of 𝜆 ≤ 2. (It will turn out 
that this is good enough since we will find enough eigenvalues of this form.) Now we have 
to figure out which of these solutions also satisfy the boundary conditions (BC). Since such
𝜆 are the eigenvalues of 𝐵 we know there are at most 𝑛 of them. 
Substituting the general solution of Equation 6 into the boundary conditions, we get 

v[0] = 𝑐1 + 𝑐2 = 0 

v[𝑛 + 1] = 𝑐1𝑒𝑖(𝑛+1)𝜃 + 𝑐2𝑒−𝑖(𝑛+1)𝜃 = 0 

Solving we get 
𝑐1 = −𝑐2 and 𝑒𝑖(𝑛+1)𝜃 − 𝑒−𝑖(𝑛+1)𝜃 = 0 

The difference of exponentials 𝑒𝑖(𝑛+1)𝜃 − 𝑒−𝑖(𝑛+1)𝜃 = 2𝑖 sin((𝑛 + 1)𝜃). This is 0 exactly when 
(𝑛 + 1)𝜃 = 𝑚𝜋 for some integer 𝑚. 
We want 𝑛 distinct eigenvalues. From Equation 7 we get eigenvalues 

𝑚𝜋 𝜆𝑚 = 2 cos(𝜃𝑚), with 𝜃𝑚 = for 𝑚 = 1, 2, … , 𝑛. 𝑛 + 1, 
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Converting from eigenvalues of 𝐵 to eigenvalues of 𝐴, we see that the 𝑛 eigenvalues of 𝐴 
are 

−2𝑘 + 𝑘𝜆𝑚 = −2𝑘 + 2𝑘 cos(𝜃𝑚) for 𝑚 = 1, 2, … , 𝑛. 
Using the relation 𝑐1 = −𝑐2 found above, the corresponding eigenvectors are 

𝑒𝑖𝜃𝑚 𝑒−𝑖𝜃𝑚 𝑒𝑖𝜃𝑚 − 𝑒−𝑖𝜃𝑚 sin(𝜃𝑚)
⎛⎡𝑒𝑖2𝜃𝑚 ⎤ ⎡𝑒−𝑖2𝜃𝑚 ⎤⎞ ⎡𝑒𝑖2𝜃𝑚 − 𝑒−𝑖2𝜃𝑚 ⎤ ⎡sin(2𝜃𝑚)⎤

𝑐1 ⎢ ⎥ − ⎢ ⎥ = 𝑐1 ⎢ ⎥ = 2𝑖𝑐1 ⎢ ⎥⎜⎢ ⋮ ⎥ ⎢ ⋮ ⎥⎟ ⎢ ⋮ ⎥ ⎢ ⋮ ⎥
𝑒𝑖𝑛𝜃𝑚 𝑒−𝑖𝑛𝜃𝑚 𝑒𝑖𝑛𝜃𝑚 − 𝑒−𝑖𝑛𝜃𝑚 ⎝⎣ ⎦ ⎣ ⎦⎠ ⎣ ⎦ ⎣sin(𝑛𝜃𝑚)⎦ 

Removing the factor of 2𝑖𝑐1, these are exactly the eigenvectors claimed in the theorem. 

We have found all the eigenpairs needed to give the general solution to the discrete heat 
equation u ′ = 𝐴u. We record it here: 

u(𝑡) = 𝑐1𝑒𝜆1𝑡v1 + … + 𝑐𝑛𝑒𝜆𝑛𝑡vn, 

sin(𝜃𝑚)
𝑚𝜋 ⎡sin(2𝜃𝑚)⎤ 

where 𝜃𝑚 = = −2 + 2 cos(𝜃𝑚), vm = ⎢ ⎥.𝑛 + 1, 𝜆𝑚 ⎢ ⋮ ⎥ 
⎣sin(𝑛𝜃𝑚)⎦ 

5 Letting n go to infinity 

The discrete model says that a given section of the heated rod has a uniform temperature. 
This is clearly flawed. We can make it more accurate by dividing the rod into more and 
more pieces. In the limit, the pieces become infinitesimal and the model becomes exact. 
(Well, exact assuming the linear assumptions in Newton’s law of cooling are true.) 

Our goal in this section is to show that, as 𝑛 goes to infinity, 
1. modal solutions of the discrete heat equation with boundary conditions go to modal 
solutions of the continuous heat equation with boundary conditions. 
2. the discrete heat equation with discrete boundary conditions goes to the continuous heat 
equation with continuous boundary conditions. 
While we proceed, you should remember that the entries in the vector u(𝑡) represent the 
temperature at discrete postions along the rod. In the limit, the vector will become the 
heat function 𝑢(𝑥, 𝑡), giving the temperature at every point along the rod. 

5.1 The rate constant k 

Physically, it makes more sense to talk about the movement of heat content between the 
sections than than the movement of temperature. Since heat content is the integral of 
temperature we were able to write out equations in terms of temperature. But this makes 
the rate constant 𝑘 dependent on the dimensions of the sections as well as the physical 
properties of the material in the rod. 
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We know that as Δ𝑥 decreases, there is less distance for the heat to move so 𝑘 should 
increase. Empirically, it turns out that 

𝑘0𝑘 = (8)(Δ𝑥)2 
, 

where 𝑘0 is a physical constant associated to the material but not the dimensions of the 
sections. (See the appendix for a derivation of Equation 8 from Fourier’s law of heat 
conduction.) 

5.2 The limit of discrete modal solutions 

The goal of this section is to show that, in the limit as 𝑛 goes to infinity, the modal solutions 
to the Equation 4 go to modal solutions of the continuous heat equation. 
The computations to do this limiting procedure are a little involved, but they follow the 
standard methods from calculus. We have 

𝐿 = length of rod 

𝐿 Δ𝑥 = width of the segments 𝑛 + 1 
= 

𝑗𝐿 𝑥𝑗 = 𝑗Δ𝑥 = center of the 𝑗th segment 𝑛 + 1 
= 

𝑚𝜋 𝜃𝑚 = 𝑛 + 1 
𝑚𝜋 sin(𝑗𝜃𝑚) = sin (𝑗 ⋅ ⋅ 𝑥𝑗)𝑛 + 1) = sin (𝑚𝜋 

𝐿 

As 𝑛 increases, the points 𝑥𝑗 = 𝑗Δ𝑥 fill in the rod. So the vector 

sin(𝜃𝑚) sin(𝑚𝜋𝑥1/𝐿)
⎡sin(2𝜃𝑚)⎤ ⎡sin(𝑚𝜋𝑥2/𝐿)⎤ 

vm = ⎢ ⎥ = ⎢ ⎥⎢ ⋮ ⎥ ⎢ ⋮ ⎥ 
⎣sin(𝑛𝜃𝑚)⎦ ⎣sin(𝑚𝜋𝑥𝑛/𝐿)⎦ 

can be replaced by the function sin(𝑚𝜋𝑥/𝐿). 
Likewise, for the eigenvalue 𝜆𝑚, we have 

𝜆𝑚 = (−2 + 2 cos ( 
𝑚𝜋 

𝑛 + 1)) 𝑘 

= (−2 + 2 cos ( 
𝑚𝜋 𝑘0

𝑛 + 1)) (Δ𝑥)2 

𝑛 + 1)) 
𝑘0(𝑛 + 1)2 

= (−2 + 2 cos ( 
𝑚𝜋 

𝐿2 

Using the power series for cos ( 
𝑚𝜋 

𝑛 + 1), this expression can be written as 

2 ( 𝑚𝜋 

= ⎛ 𝑛+1)2 

𝑛+1)4 𝑘0(𝑛 + 1)2
⎜−2 + 2 − 

2 ( 𝑚𝜋 

+ − …⎞⎟2 4! 𝐿2
⎝ ⎠ 

= − (𝑚𝜋 1 
𝐿 

)
2

𝑘0 + terms with powers of (𝑛 + 1)2 
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The last equality shows that, in the limit as 𝑛 goes to infinity, 𝜆𝑚 → − (𝑚𝜋 𝑘0.𝐿 
)

2 

Putting together the limits of vm and 𝜆𝑚, we see that, as 𝑛 goes to infinity, the modal 
solution to the discrete heat equation, u(𝑡) = 𝑒−𝜆𝑚𝑡vm, goes to a modal solution to the 
continuous heat equation 

𝑢(𝑥, 𝑡) = 𝑒−(𝑚𝜋/𝐿)2𝑘0𝑡 sin (𝑚𝜋 
𝐿 

𝑥) . (9) 

5.3 The limit of the discrete heat equation 

We just saw that, in the limit, solutions to the discrete heat equation go to the solutions of 
the continuous heat equation. We will now show that the discrete heat equation (Equation 
4) limits to the continuous heat equation (Equation 1). 
In the discrete heat equation, we have 

𝑢′
𝑗 = 𝑘(𝑢𝑗−1 − 2𝑢𝑗 + 𝑢𝑗+1) for 𝑗 = 1, 2, … , 𝑛 

where, just as we did above, we define 𝑢0(𝑡) and 𝑢𝑛+1(𝑡) to have the boundary conditions 

𝑢0(𝑡) = 0 and 𝑢𝑛+1(𝑡) = 0. 

Using Equation 8 to substitute for 𝑘, we have 

𝑘0 𝑢𝑗−1 − 2𝑢𝑗 + 𝑢𝑗+1𝑢′
𝑗 = (Δ𝑥)2 

(𝑢𝑗−1 − 2𝑢𝑗 + 𝑢𝑗+1) = 𝑘0 (10)(Δ𝑥)2 

Since 𝑢𝑗(𝑡) is the temperature of the rod at 𝑥𝑗 = 𝑗Δ𝑥 we can write 𝑢𝑗(𝑡) = 𝑢(𝑗Δ𝑥, 𝑡). 
Therefore, the expression 𝑢𝑗−1 − 2𝑢𝑗 + 𝑢𝑗+1 is a second difference in the 𝑥 variable. That is 

𝑢𝑗−1 −2𝑢𝑗 +𝑢𝑗+1 = 𝑢((𝑗−1)Δ𝑥, 𝑡)−2𝑢(𝑗Δ𝑥, 𝑡)+𝑢((𝑗+1)Δ𝑥, 𝑡) ≈ 
𝜕
𝜕𝑥 

2𝑢
2 (𝑗Δ𝑥, 𝑡)⋅Δ𝑥2 (11) 

Likewise 
𝜕𝑢 𝑢′

𝑗(𝑡) = 𝜕𝑡 (𝑗Δ𝑥, 𝑡). (12) 

Using Equations 12 and 11, Equation 10 becomes 

𝜕𝑢 𝜕2𝑢 
𝜕𝑡 (𝑗Δ𝑥, 𝑡) ≈ 𝑘0 𝜕𝑥2 (𝑗Δ𝑥, 𝑡) 

Now, in the limit as 𝑛 goes to infinity this equation becomes exact 

𝜕𝑢 𝜕2𝑢 
𝜕𝑡 (𝑥, 𝑡) = 𝑘0 𝜕𝑥2 (𝑥, 𝑡). 

We have just shown that, in the limit, the discrete heat equation becomes the continuous 
heat equation. 
Finally, in the limit, the boundary conditions become 

𝑢(0, 𝑡) = 0 and 𝑢(𝐿, 𝑡) = 0. 
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6 Appendix 

6.1 The empirical principle: Fourier’s law of heat conduction 

In Section 8.5 of their text, Edwards and Penney (Elementary Differential Equations with 
Boundary Value Problems, fifth edition) give a nice derivation of the continuous heat equa-
tion based on an empirical principle called Fourier’s law of heat conduction. This law says 

𝜙(𝑥, 𝑡) = −𝐾 𝜕𝑢 
𝜕𝑥(𝑥, 𝑡), 

where 𝜙 is the heat flux (heat per area per time) through the cross-section at position 𝑥 
and time 𝑡 and 𝐾 is the thermal conductivity of the material. (Flux is positive from right 
to left.) 

In our derivation of the continuous heat equation, we made use of the empirical principle 
𝑘0𝑘 = (Δ𝑥)2 , where 𝑘 is the rate constant in the discrete heat equation and 𝑘0 is a physical 

constant associated with the material of the rod but not its dimensions.Here we will show 
this is equivalent Fourier’s law. 
To connect Fourier’s law and our empirical principle, we need to know that the heat content 
in a section of rod from 𝑎 to 𝑏 is 

𝑄 = ∫
𝑏 

𝑐𝛿𝐴𝑢(𝑥, 𝑡) 𝑑𝑥 
𝑎 

where 𝑐 is the specific heat of the material, 𝛿 the density of the rod and 𝐴 the cross-sectional 
area. If Δ𝑥 = 𝑏 − 𝑎 is small then 

𝑄 ≈ 𝑐𝛿𝐴𝑢(𝑎, 𝑡)Δ𝑥. 

The net heat flux into the section of rod is therefore 

1 𝜕𝑄 
𝜕𝑡 ≈ 𝑐𝛿 

𝜕𝑢 
𝜕𝑡 (𝑎, 𝑡)Δ𝑥 𝐴 

The net heat flux into the section is the difference between the fluxes at either end. So, 
using Fourier’s law, (we have to be careful with signs): 

net flux in = 𝜙(𝑎, 𝑡) − 𝜙(𝑏, 𝑡) = 𝐾 (𝜕𝑢 
𝜕𝑥(𝑎, 𝑡)) ≈ 𝐾 

𝜕2𝑢 
𝜕𝑥(𝑏, 𝑡) − 

𝜕𝑢 
𝜕𝑥2 (𝑎, 𝑡) Δ𝑥. 

Equating these two formulas for net flux we get 

𝑐𝛿 
𝜕𝑢 

𝜕𝑥2 (𝑎, 𝑡) Δ𝑥. 𝜕𝑡 (𝑎, 𝑡)Δ𝑥 ≈ 𝐾 
𝜕2𝑢 (13) 

Now we approximate the second partial derivative by a second difference 

𝜕2𝑢 
𝜕𝑥2 (𝑎, 𝑡) ≈ 

𝑢(𝑎 − Δ𝑥, 𝑡) − 2𝑢(𝑎, 𝑡) + 𝑢(𝑎 + Δ𝑥, 𝑡)
Δ𝑥2 
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Equation 13 becomes 

𝜕𝑢 𝜕2𝑢 
𝜕𝑡 (𝑎, 𝑡) ≈ 

𝐾
𝜕𝑥2 (𝑎, 𝑡) 𝑐𝛿 

≈ 
𝐾 𝑢(𝑎 − Δ𝑥, 𝑡) − 2𝑢(𝑎, 𝑡) + 𝑢(𝑎 + Δ𝑥, 𝑡) 
𝑐𝛿 Δ𝑥2 

𝐾 = 𝑐𝛿(Δ𝑥)2 
(𝑢(𝑎 − Δ𝑥, 𝑡) − 2𝑢(𝑎, 𝑡) + 𝑢(𝑎 + Δ𝑥, 𝑡)) 

Now if 𝑎 = 𝑥𝑗, 𝑎 − Δ𝑥 = 𝑥𝑗−1 and 𝑎 + Δ𝑥 = 𝑥𝑗+1 then this becomes our discrete heat 
equation 

𝜕𝑢 𝐾 
𝜕𝑡 (𝑥𝑗, 𝑡) ≈ 𝑐𝛿(Δ𝑥)2 (𝑢(𝑥𝑗−1, 𝑡) − 2𝑢(𝑥𝑗, 𝑡) + 𝑢(𝑥𝑗+1, 𝑡)) 

Comparing constants, we see that 𝑘 = 𝐾 = 𝐾 
𝑐𝛿(Δ𝑥)2 , so letting 𝑘0 𝑐𝛿 we get 

𝑘0𝑘 = Δ𝑥2 

which is exactly the principle we asserted. 
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