
ES.1803 Part I Problems 

Topic 1. Introduction to DEs; modeling; separable equa-
tions 

1.1. A country is suffering from an epidemic of a contagious disease. Let the total popu-
lation be 𝑃 . Assume the rate of change of the number 𝑥 of people infected is proportional 
to the product of the number who have the disease and the number who do not. 
Write a differential equation modeling this scenario. 

1.2. I put my root beer, which is at 20∘C, into the freezer, which is at 0∘C. After 30 
minutes the root beer is at 10∘C. How much time (measured from when I first put it into 
the freezer) will it take before it is at 4∘C. 

1.3. Write down an explicit solution (involving a definite integral) to the following initial-
value problem (IVP): 

1𝑦′ = 𝑦(2) = 0.𝑦2 ln 𝑥, 

𝑥𝑦 + 𝑥 1.4. Solve the IVP (initial-value problem): 𝑦′ = , 𝑦(2) = 0.𝑦 

1.5. Find the general solution by separation of variables: 𝑥 
𝑑𝑣 √

1 − 𝑣2.𝑑𝑥 
= 

1.6. Find all curves 𝑦 = 𝑦(𝑥) whose graphs have the following geometric property. (Use 
the geometric property to find an ODE satisfied by 𝑦(𝑥), and then solve it.) 

For each tangent line to the curve, the segment of the tangent line lying in the first quadrant 
is bisected by the point of tangency. 
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2 TOPIC 2. LINEAR SYSTEMS: INPUT-RESPONSE MODELS 

Topic 2. Linear systems: input-response models 

2.1. Find the general solution to 𝑥𝑦′ + 2𝑦 = 𝑥. 

𝑑𝑥 2.2. Consider the ODE 𝑑𝑡 + 𝑎𝑥 = 𝑟(𝑡), where 𝑎 is a positive constant, 𝑟(𝑡) > 0 and 

lim 𝑟(𝑡) = 0.
𝑡→∞ 

Show that if 𝑥(𝑡) is any solution, then lim 𝑥(𝑡) = 0. (Hint: use L’Hospital’s rule.) 
𝑡→∞ 

2.3. Heat transfer. According to Newton’s law of cooling, the rate at which the 
temperature 𝑇 of a body changes is proportional to the difference between 𝑇 and the 
external temperature. 
At time 𝑡 = 0, a pot of boiling water is removed from the stove. After five minutes, the 
water temperature is 80𝑜𝐶. If the room temperature is 20𝑜𝐶, when will the water have 
cooled to 60𝑜𝐶? (Set up and solve an ODE for 𝑇 (𝑡).) 



3 TOPIC 3. INPUT-RESPONSE MODELS CONTINUED 

Topic 3. Input-response models continued 

3.1. Consider the cascade of two mixing tanks shown. The volume of salt solution in each 
tank is 100 liters. The top tank initially has 30kg of salt and the bottom has 15kg. The 
flow rates into and out of each tank are 5 liters/minute, with pure water flowing into the 
top tank. 

Let 𝑥(𝑡) be the amount of salt in the top tank and let 𝑦(𝑡) be the amount in the bottom 
tank. 
(a) Write a DE for 𝑥(𝑡) and solve it. 

𝑑𝑦 5𝑥 (b) Show that = 100 
and solve for 𝑦(𝑡).100 

− 
5𝑦 

𝑑𝑡 



4 TOPIC 4. COMPLEX NUMBERS AND EXPONENTIALS 

Topic 4. Complex numbers and exponentials 

1 − 𝑖 4.1. Express 1 + 𝑖 in the form 𝑎+𝑏𝑖 using two methods: First, by changing the numerator 

and denominator to polar form. Second using rectangular coordinates throughout. Show 
that the two answers agree. 

4.2. Calculate the following two ways: first by changing to polar form, and second using 
the binomial theorem. 
(a) (1 − 𝑖)4 

(b) (1 + 𝑖
√

3)3 

4.3. By using Euler’s formula and the binomial theorem, express cos(3𝜃) and sin(3𝜃) in 
terms of cos(𝜃) and sin(𝜃) 

4.4. (a) Solve the equation 𝑥4 + 16 = 0. 
(b) Solve the equation 𝑥4 + 2𝑥2 + 4 = 0, expressing the four roots in both polar and 
rectangular form. 

4.5. Find 𝐼 = ∫ 𝑒3𝑥 sin(4𝑥) 𝑑𝑥 using complex replacement. 



5 TOPIC 5. HOMOGENEOUS, LINEAR, CONSTANT COEFFICIENT DES 

Topic 5. Homogeneous, linear, constant coefficient DEs 

5.1. Find the general real-valued solution to each of the following. 
(a) 𝑦″ − 3𝑦′ + 2𝑦 = 0. 
(b) 𝑦″ + 2𝑦′ + 2𝑦 = 0. (Give the solution in both polar and rectangular form.) 

(c) 𝑦″ − 2𝑦′ + 5𝑦 = 0; 𝑦(0) = 1, 𝑦′(0) = −1 

5.2. Find the general real-valued solution to each of the following. 
(a) 𝑦(6) − 𝑦 = 0. 
(b) 𝑦(4) + 16𝑦 = 0. 



6 TOPIC 6. OPERATORS, ERF AND SRF 

Topic 6. Operators, ERF and SRF 

Note: the Exponential Response Formula is also called the Exponential Input Theorem. 

6.1. (a) Let 𝑃(𝐷) = 𝐷2 + 6𝐷 + 12𝐼 . Find the general solution to 𝑃 (𝐷)𝑦 = 𝑒2𝑡. 
(b) Find a particular solution to 𝑦″ + 4𝑦′ + 12𝑦 = 𝑒−2𝑡. 

6.2. Let 𝑃(𝐷) = 𝐷2 + 7𝐷 + 12𝐼 . 
(a) Find the general solution to 𝑃 (𝐷)𝑦 = cos(2𝑡) 

(b) Find a particular solution to 𝑃 (𝐷)𝑦 = sin(2𝑡) 

(c) Find the general solution to 𝑃 (𝐷)𝑦 = 𝑒2𝑡 cos(3𝑡) 

6.3. Find a particular solution to 𝑦″ + 7𝑦′ + 12𝑦 = 𝑒−4𝑡 

6.4. (a) Find a particular solution to 𝑦″ + 9𝑦 = cos(𝑡) 

(b) Find a particular solution to 𝑦″ + 9𝑦 = cos(3𝑡) 

6.5. Find the general real-valued solution to 𝑦(4) + 2𝑦″ + 4𝑦 = cos(3𝑡) 



7 TOPIC 7. INHOMEGENOUS DES; UC METHODS; THEORY 

Topic 7. Inhomegenous DEs; UC methods; theory 

7.1. Find particular solutions to each of the following differential equations. 
(a) 𝑦″ − 𝑦′ + 3𝑦 = 3𝑡 + 5 

(b) 𝑦″ + 8𝑦′ + 7𝑦 = 𝑡2 

(c) 𝑦(5) + 3𝑦(4) + 2𝑦 = 21 

7.2. Theory: Existence and Uniqueness Theorem. 
(a) By differentiating, find a second-order linear homgeneous DE of the form 

𝑦″ + 𝑝(𝑡)𝑦′ + 𝑞(𝑡)𝑦 = 0 

that has 𝑦(𝑡) = 𝑡2 as a solution. 
(b) The solutions 

𝑦(𝑡) = 𝑡2 and 𝑦(𝑡) = 0 

both satisfy the same initial conditions at 𝑡 = 0, i.e., 𝑦(0) = 0 and 𝑦′(0) = 0. Why is this 
not contradicted by the Existence and Uniqueness Theorem from the Topic 7 class notes? 



8 TOPIC 8. APPLICATIONS: STABILITY 

Topic 8. Applications: stability 

8.1. Consider 𝑦″ + 𝑏𝑦′ + 4𝑦 = 0, where 𝑏 is a constant. For each statement below, tell for 
what value(s) of 𝑏 it holds (indicate reasoning): 
(a) the equation has oscillatory solutions 

(b) all solutions are damped oscillations 

8.2. The equation 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0 represents the motion of a damped spring-mass 
system. (The independent variable is the time 𝑡.) 

How are the constants 𝑚, 𝑏, 𝑘 related if the system is critically damped (i.e., just on the 
edge of being oscillatory)? 

8.3. A series RLC-circuit is modeled by either of the ODEs (the second equation is just 
the derivative of the first) 

𝐿𝑞″ + 𝑅𝑞′ + 𝐶
𝑞 = 𝐸, 

𝐿𝑖″ + 𝑅𝑖′ + 𝐶
𝑖 = 𝐸′, 

where 𝑞(𝑡) is the charge on the capacitor, 𝑖(𝑡) is the current in the circuit and 𝐸(𝑡) is 
the applied electromotive force (from a battery or generator). The constants 𝐿, 𝑅, 𝐶 are 
respectively the inductance of the coil, the resistance, and the capacitance, measured in 
some compatible system of units. 
(a) Show that if 𝑅 = 0 and 𝐸 = 0, then 𝑞(𝑡) varies periodically, and find the period. 
(Assume 𝐿 ≠ 0.) 

(b) Assume 𝐸 = 0; how must 𝑅, 𝐿, 𝐶 be related if the current oscillates? 

(c) If 𝑅 = 0 and 𝐸 = 𝐸0 sin 𝜔𝑡, then for a certain 𝜔0, the current will have large amplitude 
whenever 𝜔 ≈ 𝜔0. What is the value of 𝜔0. (Indicate reason.) 

8.4. Consider the system 𝑦″ + 2𝑦′ + 𝑐𝑦 = 0, 𝑐 a constant . 
(a) Different values of 𝑐 give different types of characteristic roots, e.g., both positive, one 
positive one negative, etc. For each type give the range of values of 𝑐 which give that type. 
(b) Summarize the above information in Part (a) in a 𝑐-axis, and marking the intervals 
on it corresponding to the different possibilities for the roots of the characteristic equation. 
Finally, use this information to mark the interval on the 𝑐-axis for which the corresponding 
ODE is stable. 

Extra material on non-constant coefficient linear equations. 
Note. In ES.1803, we used to do a little work with second-order nonconstant coefficient 
DEs. The following two problems are about such equations. To solve them, you will need 
the following formulas. 



9 TOPIC 8. APPLICATIONS: STABILITY 

1. Wronskian of two functions: For functions 𝑦1(𝑥) and 𝑦2(𝑥), their Wronskian is 

𝑦2(𝑥)𝑊 (𝑥) = det [𝑦1(𝑥)
𝑦1

′ (𝑥) 𝑦2
′ (𝑥)] . 

2. Variation of parameters formula: Consider the inhomogeneous second-order linear DE 
and its associated homogeneous equation. 

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑓(𝑥) ((I) Inhomogeneous) 

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0 ((H) Homogeneous) 

If 𝑦1 and 𝑦2 are basic solutions to (H), then the solution to (I) is given by 

𝑦(𝑥) = −𝑦1(𝑥) (∫ 
𝑦2(𝑥) 

𝑊(𝑥)𝑓 𝑑𝑥 + 𝐶2) . 𝑊(𝑥)𝑓(𝑥) 𝑑𝑥 + 𝐶1) + 𝑦2(𝑥) (∫ 
𝑦1(𝑥) 

Here, 𝑊 (𝑥) is the Wronskian of 𝑦1, 𝑦2. 

8.5. Find a particular solution by variation of parameters. 
(a) 𝑦″ + 𝑦 = tan(𝑥). 
(b) 𝑦″ + 2𝑦′ − 3𝑦 = 𝑒−𝑥. 
(c) 𝑦″ + 4𝑦 = sec2(2𝑥). 

8.6. Bessel’s equation of order 𝑝 is 𝑥2𝑦″ + 𝑥𝑦′ + (𝑥2 − 𝑝2)𝑦 = 0. For 𝑝 = 1/2 two 
indendent solutions for 𝑥 > 0 are 

sin√(𝑥)
𝑥 

𝑦1(𝑥) = and 𝑦2(𝑥) = 
cos√(𝑥)

𝑥 
, 𝑥 > 0. 

Use this to find the general solution to 𝑥2𝑦″ + 𝑥𝑦′ + (𝑥2 − 1
4)𝑦 = 𝑥3/2 cos(𝑥). 



10 TOPIC 9. APPLICATIONS: FREQUENCY RESPONSE 

Topic 9. Applications: frequency response 

9.1. For each of the following systems, with input 𝑓(𝑡) and output 𝑥(𝑡) use your calculus 
graphing skills to plot the graph of the amplitude response (i.e., gain vs. 𝜔). If there is a 
practical resonant frequency say what it is. 
(a) 𝑥″ + 𝑥′ + 7𝑥 = 𝑓(𝑡), where 𝑓(𝑡) = 𝐹0 cos(𝜔𝑡). 
(b) 𝑥″ + 8𝑥′ + 7𝑥 = 𝑓(𝑡), where 𝑓(𝑡) = 𝐹0 cos(𝜔𝑡). 

9.2. Do problem 3c from the Topic 8 Part I problems. 

9.3. Coupled springs. A system consisting of two coupled springs is modeled by the pair 
of DEs. 

𝑥″
1 + 2𝑥1 − 𝑥2 = 0; 𝑥″

2 + 𝑥2 − 𝑥1 = 0. 
Here 𝑥1 is the displacement of mass 𝑚1 from equilibrium and 𝑥2 is the displacement of 𝑚2. 
For this problem we took both masses and both spring constants to be 1 (in compatible 
units). 

m1 = 1 m2 = 1

x1(t) x2(t)

k1 = 1 k2 = 1

(a) Eliminate 𝑥1 from these equations to get a fourth-order DE for 𝑥2. 
(b) Solve the DE from Part (a) to find the general solution for 𝑥2. 



TOPIC 10. DIRECTION FIELDS, INTEGRAL CURVES, EXISTENCE OF SOLUTIONS11 

Topic 10. Direction fields, integral curves, existence of so-
lutions 

10.1. For each of the following ordinary differential equations, draw a direction field by 
using about five isoclines; the picture should be square, using the intervals between −4 and
4 on both axes. Then, sketch in some integral curves, using the information provided by 
the direction field. 
Finally, do whatever else is asked. 

= −𝑦 (a) 𝑦′ Also, solve the equation exactly and compare your integral curves with the 𝑥 . 
correct ones. 
(b) 𝑦′ = 2𝑥 + 𝑦. Also, find a solution whose graph is also an isocline, and verify this 
fact analytically (i.e., by calculation, not from a picture). (Remember: this is not to be 
expected in most cases!) 

(c) 𝑦′ = 𝑥2 + 𝑦2 − 1. 
1(d) 𝑦′ = Be sure to include the isoclines for 𝑚 = 1 and ‘𝑚 = ∞’.𝑥 + 𝑦 

. 

You should see that the curve 𝑦 = −𝑥 − 1 is a solution. 
Sketch in some curves that follow the directection field. The curves are very pretty, but we 
won’t call these integrals curves because those that pass through the 𝑚 = ∞ isocline have 
two 𝑦 values for each 𝑥 value. That is, they are not the graph of a function 𝑦 = 𝑦(𝑥). 
Each of these curves represent two solutions both starting on the 𝑚 = ∞ isocline. That is, 
they are a combination of two integral curves. 
Will any other integral curves cross the line 𝑦 = −𝑥 − 1? Explain by using the existence 
and uniqueness theorem 

−𝑦 10.2. Consider the differential equation 𝑦′ = 𝑥2 + 𝑦2 . 

(a) Sketch a direction field with several isoclines, including the nullcline, for the ODE 

Explain, using it and the ODE itself how one can tell that the solution 𝑦(𝑥) satisfying the 
initial condition 𝑦(0) = 1 is a decreasing function for 𝑦 > 0 and is always positive for 𝑥 > 0 
. 
(b) Redo the sketch. This time, just draw the nullclines and then label each region in the 
plane with a plus or a minus depending on the slope of the direction field in that region. 
Using just this information, sketch in a few solutions. 

10.3. According to the existence and uniqueness theorem, under what conditions on
𝑎(𝑥), 𝑏(𝑥), and 𝑐(𝑥) will the initial value problem (IVP) 

𝑎(𝑥) 𝑦′ + 𝑏(𝑥) 𝑦 = 𝑐(𝑥), 𝑦(𝑥0) = 𝑦0 

be guaranteed to have a unique solution in some interval [𝑥0 − ℎ, 𝑥0 + ℎ] centered around 
𝑥0? 



12 TOPIC 11. NUMERICAL METHODS FOR FIRST-ORDER ODES 

Topic 11. Numerical methods for first-order ODEs 

11.1. Let 𝑦(𝑥) be the solution to the IVP 𝑦′ = 𝑥 − 𝑦; 𝑦(0) = 1. 
(a) Use the Euler method with step size ℎ = 0.1 to find an approximate value of 𝑦(𝑥) 
for 𝑥 = 0.1, 0.2, 0.3 

Is your estimate for 𝑦(0.3) too high or too low, and why? 

(b) Use the RK2 method (also called Modified Euler, Improved Euler, or Heun’s method) 
and the step size ℎ = 0.1 to determine the approximate value of 𝑦(0.1). 
Did the estimate in Part (b) move the estimate in Part (a) in the correct direction, e.g., if 
the estimate in Part (a) was too low, did Part (b) give an increased estimate? 



13 TOPIC 12. AUTONOMOUS DES AND BIFURCATION DIAGRAMS 

Topic 12. Autonomous DEs and bifurcation diagrams 

12.1. For each of the following autonomous equations 𝑑𝑥/𝑑𝑡 = 𝑓(𝑥), do the following: 
(i) Draw the phase line. Be sure to label each critical point as stable, unstable or semi-stable. 
(ii) Use the information in the phase line to make a second picture showing the 𝑡𝑥-plane, 
with a set of typical solutions to the DE: the sketch should show the main qualitative 
features (e.g., the constant solutions, asymptotic behavior of the non-constant solutions). 
(a) 𝑥′ = 𝑥2 + 2𝑥 

(b) 𝑥′ = −(𝑥 − 1)2 

(c) 𝑥′ = 2𝑥 − 𝑥2 

(d) 𝑥′ = (2 − 𝑥)3 

12.2. Consider 𝑦′ = 𝑦(𝑦 −𝑎−1)(𝑦 −2𝑎), where 𝑎 is a constant. (a) Draw the bifurcation 
diagram. (𝑦 vs. 𝑎) 

(b) For what values of 𝑎 is this sustainable? 

(c) Identify all the bifurcation points. 



TOPIC 13. LINEAR ALGEBRA: MATRICES, VECTOR SPACES, LINEARITY 14 

Topic 13. Linear algebra: matrices, vector spaces, linearity 

13.1. Vectors and matrices 

(a) Write a row vector with norm 1 (the square root of the sum of the squares of the 
entries). 
(b) Write a column vector with 4 entries whose entries add to zero. 
In Parts (c) and (d), let 

1 0 1 4
⎤𝐴 = ⎢⎡0 1 0 2⎥

⎣0 0 1 1⎦ 

(c) Find a vector v such that 𝐴v is the third column of 𝐴. 
(d) Find a vector w such that w𝐴 is the third row of 𝐴. 

13.2. Which of the following sets are vector spaces? 

𝑥
⎡ ⎤(a) The set of vectors ⎢𝑦⎥ in R3 such that 𝑥 + 𝑦 + 𝑧 = 0. 
⎣𝑧⎦ 

𝑥
⎡ ⎤(b) The set of vectors ⎢𝑦⎥ in R3 such that 𝑥 + 𝑦 + 𝑧 = 1. 
⎣𝑧⎦ 

(c) The set of functions 𝑓(𝑡) of 𝑡 such that 𝑓(0) = 0 and 𝑓(𝜋) = 0. 
(d) The set of all linear combinations in R8 of the vectors: 
(1, −2, 0, 0, 0, 0, 0, 0), (0, 1, −2, 0, 0, 0, 0, 0), (0, 0, 1, −2, 0, 0, 0, 0), (0, 0, 0, 1, −2, 0, 0, 0) 

13.3. Consider the two compartment system with flow rates in liters/minute and volumes 
in liters as shown. Suppose the concentration of solute in the inflows are 3g/l and 2g/l for 
tanks 1 and 2 respectively. 

1 
3 

2 

𝑉1 = 10 𝑉2 = 54 

3 

(a) Give the system of DEs modeling the amounts of solute 𝑥(𝑡), 𝑦(𝑡) in tanks 1 and 2. 
Write your answer in matrix form. 
(b) Find a particular solution xp to this inhomogeneous DE by guessing a constant 
solution. 



15 TOPIC 14. LINEAR ALGEBRA: ROW REDUCTION AND SUBSPACES 

Topic 14. Linear algebra: row reduction and subspaces 

14.1. Find each of the following matrix products, and their ranks. 
1 1 1 2

⎡ ⎤ ⎤ [1 2 0 ⎤(a) ⎢1⎥ [1 0 −1] (b) [1 2 −1] ⎡⎢1⎥ (c) 1] ⎡⎢0 1⎥0 1
⎣1⎦ ⎣1⎦ ⎣2 3⎦ 

14.2. (a) Which of the following matrices is in reduced row-echelon form? 

1 2 0 
(i) [0 

0
1] (ii) [1 

0
5] (iii) [0 

0
1] (iv) ⎡⎢0 0 0⎥⎤ (v) [0] 1 0 0 

⎣0 0 1⎦ 

(b) Find the reduced echelon form of each of the following matrices. 

−2 1 0 
(i) [4] (ii) [1 1] (iii) [1 

1
1] (iv) ⎡⎢ 1 −2 1 ⎥⎤1 

⎣ 0 1 −2⎦ 

14.3. (Column space, null space, independence, basis, dimension.) 

(a) Write a matrix equation that shows that the vectors 

⎤ ⎤ ⎤ ⎤v1 = ⎢⎡0
1
⎥ , v2 = ⎢⎡1

1
⎥ , v3 = ⎢⎡1

1
⎥ , v4 = ⎢⎡3

2
⎥ ,

⎣0⎦ ⎣0⎦ ⎣1⎦ ⎣4⎦ 

are linearly dependent (or, more properly, form a linearly dependent set). 
(b) (i) Find a basis for the null spaces of the following matrices. Do this by first finding 
the reduced echelon form, then, setting each free variable equal to 1 and the others to zero, 
one at a time. 

0 1 20 1 2 3 ⎡ ⎤⎤ 1 2 3𝐴 = ⎡⎢1 2 3 4⎥ , 𝐵 = ⎢ ⎥⎢2 3 4⎥⎣2 3 4 5⎦ ⎣3 4 5⎦ 

(Note: 𝐵 = 𝐴𝑇 .) 

(ii) Write down the general solution to 𝐴x = ⎡⎢1
1
⎥⎤ 

⎣1⎦ 

1
⎡ ⎤1(iii) Write down the general solution to 𝐵y = ⎢ ⎥.⎢1⎥ 
⎣1⎦ 

(c) Find a basis for each of the following subspaces of R4. Do this in (ii) and (iii) by 
expressing the subspace as the null space of an appropriate matrix, and finding a basis for 
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that null space by finding the reduced echelon form. In each case, state the dimension of 
this subspace. 
(i) All vectors whose entries are all the same. 
(ii) All vectors whose entries add to zero. 

𝑥1⎡ ⎤𝑥2(iii) All vectors ⎢ ⎥ such that 𝑥1 + 𝑥2 = 0 and 𝑥1 + 𝑥3 + 𝑥4 = 0.⎢𝑥3⎥ 
⎣𝑥4⎦ 

(d) (i) For which numbers 𝑐 and 𝑑 does the column space of the matrix 

1 2 5 0 5
⎡ ⎤⎢0 0 𝑐 2 2⎥
⎣0 0 0 𝑑 2⎦ 

have dimension 2? 

(ii) Find numbers 𝑐 and 𝑑 such that the null space of the matrix 

1 2 5 0 5
⎡ ⎤⎢0 0 𝑐 2 2⎥
⎣0 0 0 𝑑 2⎦ 

is 3-dimensional. 
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Topic 15. Linear algebra: transpose, inverse, determinant 

15.1. (Determinants and Inverses.) 
Summary of properties of the determinant 

(0) det 𝐴 is only defined for square matrices. 
(1) det 𝐼 = 1. 
(2) Adding a multiple of one row to another does not change the determinant. 
(3) Multiplying a row by a number 𝑐 multiplies the determinant by 𝑐. 
(4) If you swap two rows, you reverse the sign of the determinant. (5) det(𝐴𝐵) = det(𝐴) det(𝐵). 
(6) 𝐴 is invertible exactly when det 𝐴 ≠ 0. 

Compute the determinants of the following matrices, and if the determinant is nonzero find 
the inverse. 

1 0 0 01 𝑎 𝑏 0 1 1 ⎡ ⎤ 
(a) [1

0 
𝑎
1] (b) ⎡⎢0 1 𝑐⎥⎤ (c) ⎡⎢1 0 1⎥⎤ (d) ⎢⎢0

0 
0
2 

3
0 

0
0
⎥⎥. 

⎣0 0 1⎦ ⎣1 1 0⎦ ⎣0 0 0 4⎦ 

15.2. (Rotation matrices.)
− sin 𝜃 Let 𝑅(𝜃) = [cos 𝜃 

sin 𝜃 cos 𝜃 
] 

(a) Compute 𝑅(𝛼)𝑅(𝛽). Show that it is 𝑅(𝛾) for some angle 𝛾. 
(b) Compute det 𝑅(𝜃) and 𝑅(𝜃)−1. 
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Topic 16. Linear algebra: eigenvalues, diagonalization 

16.1. (Eigenvalues and Eigenvectors.) 

1 0(a) (i) Find the eigenvalues and eigenvectors of the matrices 𝐴 = [1 
2] and 𝐵 = [3 

4].0 1 

(ii) Find the eigenvalues of 𝐴𝐴 and 𝐴𝐵 (It’s not generally the case that the eigenvalues of 
a product are the products of the eigenvalues.) 

(iii) If you know the eigenvalues of 𝐴, what can you say about the eigenvalues of 𝑐𝐴 (where
𝑐 is some constant, and 𝑐𝐴 means 𝐴 with all entries multiplied by 𝑐)? 

(iv) Find the eigenvalues of 𝐴 + 𝐵 for the matrices 𝐴 and 𝐵 in (i). (It’s not generally the 
case that the eigenvalues of a sum are the sum of the eigenvalues.) 

(b) Find the characteristic polynomial of each of the following matrices. 
1 0 0 01 𝑎 𝑏 0 1 1 ⎡ ⎤𝑎 ⎤ ⎤ 0 2 0 0(i) [1 (ii) ⎡0 1 𝑐 (iii) ⎡1 0 1 (iv) ⎢ ⎥.0 1] ⎢ ⎥ ⎢ ⎥ ⎢0 0 3 0⎥⎣0 0 1⎦ ⎣1 1 0⎦ ⎣0 0 0 4⎦ 

16.2. (Diagonalization, Orthogonal Matrices) 

(a) (i) Diagonalize each of the following matrices: that is, find an invertible 𝑆 and a 
diagonal Λ such that the matrix factors as 𝑆Λ𝑆−1. 

𝐴 = [1 2 , 𝐵 = [1 1
0 3] 3 3] 

(ii) Write down diagonalizations of 𝐴3 and 𝐴−1. 
(b) Suppose that 𝐴 is a 10×10 matrix of rank 1 and trace 5. What are the ten eigenvalues of 
𝐴? (Remember, eigenvalues can be repeated! and the trace of a matrix, defined as the sum 
of its diagonal entries, is equally well the sum of its eigenvalues (taken with repetition).) 

(c) A matrix 𝑆 is orthogonal when its columns are orthogonal to each other and all have 
length (norm) 1. This is the same as saying that 𝑆𝑇 𝑆 = 𝐼 . Think about why this is true! 

1Write the symmetric matrix 𝐴 = [−2 
−2] as 𝑆Λ𝑆−1 with Λ diagonal and 𝑆 orthogonal.1 

16.3. (Two dimensional linear dynamics.) 

(a) Diffusion: A door is open between rooms that initially hold 𝑣(0) = 30 people and 
𝑤(0) = 10 people. People tend to move to the less crowded room. Let’s suppose that the 
movement is proportional to 𝑣 − 𝑤: 

𝑣′ = 𝑤 − 𝑣 , 𝑤′ = 𝑣 − 𝑤 

(i) Write this system as a matrix equation u ′ = 𝐴u: What is 𝐴? 

(ii) Find the eigenvalues and eigenvectors of this matrix. 
(iii) What are 𝑣 and 𝑤 at 𝑡 = 1 
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(iv) What are 𝑣 and 𝑤 at 𝑡 = ∞? (Some parties last that long!) 

1(b) Find all the solutions to u ′ = [ 0 
0] u which trace out the circle of radius 1. −1 



20 TOPIC 17. MATRIX METHODS OF SOLVING SYSTEMS OF DES 

Topic 17. Matrix methods of solving systems of DEs 

17.1. (Normal modes) 

(a) Suppose 𝐴 and 𝐵 are square matrices with eigenvalues 𝜆1, … 𝜆𝑚 and 𝜇1 … 𝜇𝑛. What 

are the eigenvalues of 𝐶 = [ 
𝐴
0 𝐵

0 ]? 

(b) Suppose 𝐴 is an 𝑛 × 𝑛 matrix and 𝐼 is the 𝑛 × 𝑛 identity. Express the eigenvalues of 

the 2𝑛 × 2𝑛 matrix 𝐶 = [ 𝐴
0 𝐼

0 
] in terms of the eigenvalues of 𝐴. 

17.2. (Decoupling.) 
Farmer Jones and Farmer McGregor have adjacent farms, both afflicted with rabbits. Rab-
bits breed fast, with a growth rate of 5 per year. Let 𝑥(𝑡) be the number of rabbits in Jones’ 
farm and 𝑦(𝑡) the number in McGregor’s. These systems are coupled: the rabbits can jump 
over the hedge between the farms. McGregor’s grass is greener and the system of equations 
turns out to be 

𝑥′ = 3𝑥 + 𝑦 
𝑦′ = 2𝑥 + 4𝑦 

In matrix form the equation is 

𝑣𝑏𝑥′ = 𝐴x, x = [𝑥
𝑦] , 𝐴 = [3 

4
1]2 

(a) Explain how the growth rate of 5 is reflected in these equations. 
(b) The grass on McGregor’s farm is greener. How is this reflected in the system of 
equations? 

(c) We’ll tell you that the eigenvalues and eigenvectors for this system are 

𝜆1 = 5, v1 = [2
1] ; 𝜆2 = 2, v2 = [−1

1 ] . 

Diagonalize the matrix 𝐴 and decouple this system 

17.3. Solve x ′ = 𝐴x for each of the following matrices 𝐴. 

(a) 𝐴 = [−3 4
−2 3] 

(b) 𝐵 = [4 −3
8 −6] 

1 −1 0 
(c) 𝐶 = ⎡⎢ 1 2 1 ⎥⎤ 

⎣−2 1 −1⎦ 

(Hint: you should find the characteristic polynomial is (𝜆 − 1)(𝜆 − 2)(𝜆 + 1).) 

−517.4. (Complex eigenvalues) Solve the system x ′ = [1 
−1] x. Give the general real-valued 1 

solution. 
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−417.5. (Complex eigenvalues) Solve the system x ′ = [3 
3 ] x. Give the general real-valued 4 

solution. 



TOPIC 18. MATRIX EXPONENTIAL, EXPONENTIAL AND SINUSOIDAL INPUT22 

Topic 18. Matrix exponential, exponential and sinusoidal 
input 

318.1. Let 𝐴 = [4 
2]. Solve the initial value problem 1 

x ′ = 𝐴x, x(0) = [1
3] . 

Do this using the matrix exponential. You can leave the matrix exponential as a product 
of 3 matrices. 

118.2. Let 𝐴 = [−1 
3]. Use the exponential response formula to do the following. −5 

(a) Find a particular solution to x ′ = 𝐴x + [𝑒
0
2𝑡

]. 

(b) Find a particular solution to x ′ = 𝐴x + [𝑒
𝑒

3𝑡
2𝑡

]. 

(c) Find a particular solution to x ′ = 𝐴x + [sin
0
(𝑡)]. 

−2] x + [ 
𝑒−2𝑡 

18.3. Find a solution to x ′ = [1 1
4 −2𝑒𝑡]. 
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Topic 19. Fundamental matrix, variation of parameters 

19.1. Consider the second-order equation 𝑥″ +𝑝(𝑡)𝑥′ +𝑞(𝑡)𝑥 = 𝑓(𝑡). Write the companion 
system x ′ = 𝐴x + F. 

19.2. Let x1(𝑡) = [1
𝑡] and x2(𝑡) = [2𝑡

𝑡2
] be two vector functions. 

(a) Prove by using the definition that x1 and x2 are independent. 
(b) Calculate the Wronksian 𝑊 (x1, x2). 
(c) Find a linear system x ′ = 𝐴x having x1 and x2 as solutions. (Hint, use the relation 
Φ′ = 𝐴Φ for a fundamental matrix Φ.) 

(d) The solution x2(𝑡) has x2(0) = [0
0]. The trivial solution to the system in Part (c) also 

takes this value. Why does this not violate the existence and uniqueness theorem? 

−2] x + [ 
𝑒−2𝑡 

19.3. Use variation of parameters to solve x ′ = [1 1
4 −2𝑒𝑡]. 

−119.4. Use variation of parameters to solve x ′ = [2 
−2] x + [−1

1 ] 𝑒𝑡.3 
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Topic 20. Step and delta functions. 

20.1. (Integration) Compute 

∫
10 

5𝛿(𝑡 + 1) + 3𝛿(𝑡) + 𝑡2𝛿(𝑡 − 5) + 𝑡𝛿(𝑡 − 20) 𝑑𝑡. 
0− 

20.2. (Differentiation) When you fire a gun, you exert a very large force on the bullet over 
a very short period of time. If we integrate 𝐹 = 𝑚𝑎 = 𝑚𝑥" we see that a large force over a 
short time creates a sudden change in the momentum, 𝑚𝑥′ . This is called an ”impulse.” 

If the gun is fired straight up, the graph of the elevation of the bullet, plotted against 𝑡, 
starts at zero, then rises in an inverted parabola, and then when it hits the ground it stops 
again. 
The velocity (derivative of the position function) is zero for 𝑡 < 0; then at 𝑡 = 0 it rises to 
𝑣0 (the initial velocity of the bullet); then it falls at constant acceleration (of gravity) until 
the instant when it hits the ground, when it returns abruptly to zero. 
The graph of 𝑣(𝑡) is shown at below. 

Give a formula for the generalized derivative of 𝑣(𝑡) and sketch its graph. 

20.3. Solve the following DEs and graph the solution. 
(a) 2𝑥″ + 2𝑥′ = 𝛿(𝑡) with rest IC. 
(b) 2𝑥″ + 2𝑥′ = 𝛿(𝑡 − 1) with rest IC. 

𝑡 

𝑣0 

−𝑣0 

𝑣(𝑡) 

𝑡0 
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Topic 21. Fourier series: basics. 

21.1. Find the smallest period for each of the following. 
(a) sin(𝜋𝑡/3) (b) | sin(𝑡)| (c) cos2(3𝑡). 

21.2. The function 𝑓(𝑡) has period 1. Over the interval 0 < 𝑡 < 1 we have 𝑓(𝑡) = 𝑡. Sketch 
the graph of 𝑓(𝑡) over 3 full periods and find the Fourier series for 𝑓(𝑡) 



26 TOPIC 22. FOURIER SERIES INTRODUCTION CONTINUED. 

Topic 22. Fourier series introduction continued. 

22.1. The function 𝑓(𝑡) has period 1. Over the interval 0 < 𝑡 < 1 we have 𝑓(𝑡) = sin(𝜋𝑡). 
Sketch the graph of 𝑓(𝑡) over 3 full periods and find the Fourier series for 𝑓(𝑡) 

22.2. Find the Fourier series for the period 2𝜋 function which is given over the interval 
−𝜋 < 𝑡 < 𝜋 by 

for −𝜋 < 𝑡 < 0 𝑓(𝑡) = {−𝑡 
𝑡 for 0 < 𝑡 < 𝜋 
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Topic 23. Sine and cosine series; calculation tricks. 

23.1. 
(a) Find the Fourier sine series of the function 𝑓(𝑥) = 1 − 𝑥 over the interval 0 < 𝑥 < 1 

(b) Find the Fourier cosine series of the function 𝑓(𝑥) = 1−𝑥 over the interval 0 < 𝑥 < 1 
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Topic 24. Linear ODEs with periodic input. 

24.1. For each spring-mass system, say whether or not pure resonance occurs without 
actually finding the solution. 
(a) 2𝑥″ + 10𝑥 = 𝑓(𝑡); where 𝑓(𝑡) = 1 on the interval (0, 1), 𝑓(𝑡) is odd, and of period 2. 
(b) 𝑥″ + 4𝜋2𝑥 = 𝑓(𝑡); where 𝑓(𝑡) = 2𝑡 on the interval (0, 1), 𝑓(𝑡) is odd, and of period 
2. 
(c) 𝑥″ + 9𝑥 = 𝑓(𝑡); where 𝑓(𝑡) = 1 on the interval (0, 𝜋), 𝑓(𝑡) is odd, and of period 2𝜋. 

24.2. Find a periodic solution as a Fourier series to 𝑥″ + 𝑥′ + 3𝑥 = 𝑓(𝑡), where 𝑓(𝑡) = 2𝑡 
on (0, 𝜋), 𝑓(𝑡) is odd, and has period 2𝜋. 

24.3. For the following lightly damped spring-mass systems, determine what term of the 
Fourier series solution should dominate, i.e., have the biggest amplitude. 
(a) 2𝑥″ + 0.1𝑥′ + 18𝑥 = 𝑓(𝑡), where 𝑓(𝑡) = 2𝑡 on (0, 𝜋), 𝑓(𝑡) is odd, and has period 2𝜋. 
(b) 3𝑥″ + 𝑥′ + 30𝑥 = 𝑓(𝑡), where 𝑓(𝑡) = 𝑡 − 𝑡2 on (0, 1), 𝑓(𝑡) is odd, and has period 2. 
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Topic 25. PDEs; separation of variables. 

25.1. (Heat equation) Solve the following boundary value problem using Fourier’s method 
of separation of variables. 
𝑢𝑡 = 𝑢𝑥𝑥, on 0 ≤ 𝑥 ≤ 10, and 𝑡 > 0 
𝑢𝑥(0, 𝑡) = 𝑢𝑥(10, 𝑡) = 0
𝑢(𝑥, 0) = 4𝑥. 

25.2. (Wave equation) Solve the following boundary value problem using Fourier’s method 
of separation of variables. 
𝑦𝑡𝑡 = 4𝑦𝑥𝑥, on 0 ≤ 𝑥 ≤ 𝜋, and 𝑡 > 0 
𝑦(0, 𝑡) = 𝑦(𝜋, 𝑡) = 0
𝑦(𝑥, 0) = 10

1 sin(2𝑥), 𝑦𝑡(𝑥, 0) = 0. 

25.3. (Wave equation) Solve the following boundary value problem using Fourier’s method 
of separation of variables. 
𝑦𝑡𝑡 = 100𝑦𝑥𝑥, on 0 ≤ 𝑥 ≤ 1, and 𝑡 > 0 
𝑦(0, 𝑡) = 𝑦(1, 𝑡) = 0
𝑦(𝑥, 0) = 0, 𝑦𝑡(𝑥, 0) = 𝑥. 
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Topic 27. Qualitative behavior of linear systems. 

27.1. Consider the system 𝑥′ = −𝑥; 𝑦′ = −2𝑦. 
(a) Solve the system by inspection or using eigenvalues and eigenvectors. Then sketch 
the phase portrait of trajectories in the phase plane. Include arrows giving the direction of 
increasing time on the trajectories. 
Give the type and dynamic stability of the critical point at the origin. 
(b) How would the phase portrait change if the system were 𝑥′ = 𝑥; 𝑦′ = 2𝑦? 

In this case, what is the type and dynamic stability of the critical point at the origin? 

27.2. Sketch the phase portrait for each of the following. Also give the type and dynamic 
stability of the critical point at the origin for each. 

𝑥′ = 2𝑥 − 3𝑦 (a) .𝑦′ = 𝑥 − 2𝑦 

𝑥′ = 2𝑥 (b) .𝑦′ = 3𝑥 + 𝑦 

𝑥′ = −2𝑥 − 2𝑦 (c) .𝑦′ = −𝑥 − 3𝑦 

𝑥′ = 𝑥 − 2𝑦 (d) .𝑦′ = 𝑥 + 𝑦 

𝑥′ = 𝑥 + 𝑦 (e) .𝑦′ = −2𝑥 − 𝑦 

27.3. Consider the damped spring-mass system 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0, 𝑚, 𝑏, 𝑘 > 0. 

(a) Write this as an equivalent first-order linear system. 
(b) Suppose 𝑏 = 0. What is the type of the critical point at (0, 0)? Is it dynamically 
stable? 

(c) Suppose 𝑏 is small relative to 𝑚 and 𝑘. What is the type of the critical point at (0, 0)? 
Is it dynamically stable? In which sense (clockwise or counterclockwise) do the trajectories 
rotate? 

(d) Suppose 𝑏 is large relative to 𝑚 and 𝑘. What is the type of the critical point at (0, 0)? 
Is it dynamically stable? 

(e) Can the critical point be a saddle? 
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Topic 28. Qualitative behavior of nonlinear systems. 

28.1. Find the critical points of each of the following nonlinear autonomous systems. 
𝑥′ = 𝑥2 − 𝑦2 

(a) 𝑦′ = 𝑥 − 𝑥𝑦. 
𝑥′ = 1 − 𝑥 + 𝑦 (b) 𝑦′ = 𝑦 + 2𝑥2. 

28.2. Write each of the following equations as an equivalent first-order system, and find 
the critical points. 
(a) 𝑥″ + 𝑎(𝑥2 − 1)𝑥′ + 𝑥 = 0. 
(b) 𝑥″ − 𝑥′ + 1 − 𝑥2 = 0. 

28.3. Consider the system 

𝑥′ = 𝑓(𝑥, 𝑦) 

𝑦′ = 𝑔(𝑥, 𝑦) 

In general, what can you say about the relation between the trajectories and the critical 
points of this system and those of the following related systems? 

𝑥′ = −𝑓(𝑥, 𝑦) (a) 𝑦′ = −𝑔(𝑥, 𝑦). 
𝑥′ = 𝑔(𝑥, 𝑦) (b) 𝑦′ = −𝑓(𝑥, 𝑦). 

28.4. Consider the autonomous system 
𝑥′ = 𝑓(𝑥, 𝑦) with solution (𝑥(𝑡), 𝑦(𝑡)) 𝑦′ = 𝑔(𝑥, 𝑦) 

(a) Show that (𝑥(𝑡), 𝑦(𝑡)) = (𝑥(𝑡 − 𝑡0), 𝑦(𝑡 − 𝑡0)) is also a solution. What is the geometric ̃ ̃ 
relation between the two solutions, i.e., the geometric relation between their respective 
trajectories? 

(b) The existence and uniqueness theorem for the system says that if 𝑓 and 𝑔 are contin-
uously differentiable everywhere, there is one and only one solution (𝑥(𝑡), 𝑦(𝑡)) satisfying a 
given initial condition (𝑥(𝑡0), 𝑦(𝑡0)) = (𝑎, 𝑏). 
Using this and Part (a), show that two trajectories either trace the same curve or do not 
intersect anywhere. 
(Note that if two trajectories intersect at a point (𝑎, 𝑏), the corresponding solutions which 
trace them out may be at (𝑎, 𝑏) at different times. Part (a) shows one way this can happen.) 

28.5. For the following system, the origin is clearly a critical point. Give its geometric 
type and dynamic stability, and sketch some nearby trajectories of the system. 

𝑥′ = 𝑥 − 𝑦 + 𝑥𝑦 

𝑦′ = 3𝑥 − 2𝑦 − 𝑥𝑦. 



32 TOPIC 28. QUALITATIVE BEHAVIOR OF NONLINEAR SYSTEMS. 

28.6. For the following system, the origin is clearly a critical point. Give its geometric 
type and dynamic stability, and sketch some nearby trajectories of the system. 

𝑥′ = 𝑥 + 2𝑥2 − 𝑦2 

𝑦′ = 𝑥 − 2𝑦 + 𝑥3. 

28.7. For the following system, the origin is clearly a critical point. Give its geometric 
type and dynamic stability, and sketch some nearby trajectories of the system. 

𝑥′ = 2𝑥 + 𝑦 + 𝑥𝑦3 

𝑦′ = 𝑥 − 2𝑦 − 𝑥𝑦. 

28.8. For the following system, carry out our program for sketching trajectories. That 
is, (i) find the critical points, (ii) analyze each and draw in nearby trajectories, (iii) add 
some other trajectories compatible with the ones you have drawn; when necessary, put in a 
vector from the vector field to help. 

𝑥′ = 1 − 𝑦 

𝑦′ = 𝑥2 − 𝑦2. 

28.9. Repeat problem 8 for the system 

𝑥′ = 𝑥 − 𝑥2 − 𝑥𝑦 

𝑦′ = 3𝑦 − 𝑥𝑦 − 2𝑦2. 
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Topic 29. Structural stability. 

29.1. Each of the following systems has a critical point at the origin. For this critical 
point, find the geometric type and dynamic stability of the corresponding linearized system. 
Say whether the system is structurally stable near the critical point and then tell what the 
possibilities would be for the corresponding critical point of the given nonlinear system. 
Is the nonlinear equilibrium at the origin dynamically stable? 

(a) 𝑥′ = −𝑥 + 4𝑦 − 𝑥𝑦2, 𝑦′ = −2𝑥 + 𝑦 + 𝑥2𝑦 

(b) 𝑥′ = −2𝑥 − 𝑦 + 𝑥2, 𝑦′ = 𝑥 − 4𝑦 + 3𝑥𝑦 + 𝑥2 

29.2. Each of the following systems has one critical point whose linearization is not 
structurally stable. In each case, sketch several pictures showing the different ways the 
trajectories of the nonlinear system might look. (We want you to draw the possible phase 
portraits including all the critical points.) 

Begin by finding the critical points and determining the type of the corresponding linearized 
system at each of the critical points. 
(a) 𝑥′ = 𝑦, 𝑦′ = 𝑥(1 − 𝑥). 
(b) 𝑥′ = 𝑥2 − 𝑥 + 𝑦, 𝑦′ = −𝑦𝑥2 − 𝑦. 
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Topic 30. Systems: population models 

30.1. The main tourist attraction at Monet Gardens is Pristine Acres, an expanse covered 
with artfully arranged wildflowers. Unfortunately, the flower stems are the favorite food of 
the Kandinsky borer; the flower and borer populations fluctuate cyclically in accordance 
with Volterra’s predator-prey equations. To boost the wildflower level for the tourists, the 
director wants to fertilize the Acres, so that the wildflower growth will outrun that of the 
borers. Assume that fertilizing would boost the wildflower growth rate (in the absence of 
borers) by 25 percent. What do you think of this proposal? Using suitable units, let 𝑥 be 
the wildflower population and 𝑦 be the borer population. Take the equations to be 

𝑥′ = 𝑎𝑥 − 𝑝𝑥𝑦 

𝑦′ = −𝑏𝑦 + 𝑞𝑥𝑦, 

where 𝑎, 𝑏, 𝑝, 𝑞 are positive constants. 

30.2. Let 𝑥(𝑡) be the population of sharks of the coast of Massachusetts and 𝑦(𝑡) the 
population of fish. Assume that the populations satisfy the Volterra predator-prey equations 

𝑥′ = 𝑎𝑥 − 𝑝𝑥𝑦; 𝑦′ = −𝑏𝑦 + 𝑞𝑥𝑦, where 𝑎, 𝑏, 𝑝, 𝑞, are positive. 

Assume time is in years and 𝑎 and 𝑏 have units 1/years. 
Suppose that warming waters kill the 10% of both the fish and the sharks each year. Show 
that the shark population actually increases. 

30.3. Consider the system of equations 

𝑥′(𝑡) = 39𝑥 − 3𝑥2 − 3𝑥𝑦; 𝑦′(𝑡) = 28𝑦 − 𝑦2 − 4𝑥𝑦. 

The four critical points of this system are (0,0), (13,0), (0,28), (5,8). 
(a) Show that the linearized system at (0,0) has eigenvalues 39 and 28. What type of 
critical point is (0,0)? 

(b) Linearize the system at (13,0); find the eigenvalues; give the type of the critical point. 
(c) Repeat Part (b) for the critical point (0,28). 
(d) Repeat Part (b) for the critical point (5,8). 

30.4. The equations for this system are 

𝑥′ = 𝑥2 − 2𝑥 − 𝑥𝑦 

𝑦′ = 𝑦2 − 4𝑦 + 𝑥𝑦 

(a) If this models two populations, what would happen to each of the populations in the 
absence of the other? 

(b) There are four critical points. Find and classify them 

(c) Sketch a phase portrait of the system. 
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30.5. The system for this equation is 

𝑥′ = 4𝑥 − 𝑥2 − 𝑥𝑦 

𝑦′ = −𝑦 + 𝑥𝑦 

(a) This is a predator-prey system. Which of 𝑥 and 𝑦 represents the predator population? 

(b) What would happen to the predator population in the absence of prey? What about 
the prey population in the absence of predators? 

(c) There are three critical points. Find and classify them 

(d) Sketch a phase portrait of this system. 
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