
18.03 Power Series Techniques
Jeremy Orloff 

1 Introduction 

Using the method of optimism to guess a power series solution allows us to solve a wide 
range of problems. We will give a hint at the power of this technique with a series of 
examples. 
Our main reference for this note is Chapter 3 of the text by Edwards and Penney: 
Edwards, C. and Penney, D, Elementary Differential Equations with Boundary Value Prob-
lems (fifth ed.). Upper Saddle River, N.J.: Prentice Hall, 2004. 
We will consider the second-order linear DE: 

𝑦″ + 𝑃 (𝑥)𝑦′ + 𝑄(𝑥) = 0 

We will do all our work around 𝑥 = 0, it is easy to translate this to 𝑥 = 𝑎. Also, we will 
not worry about radius of convergence or other analytic issues. 

2 Ordinary points: 

If 𝑃 (𝑥) and 𝑄(𝑥) are analytic (have a convergent power series) around 𝑥 = 0 then 0 is called 
an ordinary point 

Example 1. Solve 𝑦″ + 𝑦 = 0. 
∞ 

Solution: Try a power series solution: 𝑦(𝑥) = ∑ 𝑎𝑛𝑥𝑛. 
0 

∞ ∞ 

So, 𝑦″ = ∑ 𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2 = ∑(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥𝑛. 
2 0 

∞ 

Thus, 𝑦″ + 𝑦 = 0 ⇒ ∑[(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 + 𝑎𝑛]𝑥𝑛 = 0. 
0 

For the series to equal 0, we need the coefficient of 𝑥𝑛 to be 0, for every 𝑛. That is, 
𝑎𝑛 (𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 + 𝑎𝑛 = 0 ⇒ 𝑎𝑛+2 = −(𝑛 + 2)(𝑛 + 1) . 

This last equation is called the recurrence relation for the coefficients 𝑎𝑛. 
Pick an arbitrary 𝑎0. Looking at the recurrence relations we have 

𝑛 = 0: 𝑎2 = − 
𝑎0

1 . 

𝑛 = 2: 𝑎4 = −
2
𝑎
⋅
2
3 

= 
𝑎0 

1 
= 

𝑎0
4 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 4! . 

𝑎6 = − 
𝑎4

5 = −𝑎0𝑛 = 4: 6 ⋅ 6! 
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𝑎0Continuing: 𝑎2𝑛 = (−1)𝑛 

(2𝑛)! . 

Likewise, pick an arbitrary 𝑎1: 

𝑛 = 1: 𝑎3 = −3
𝑎
⋅
1
2 . 

𝑎1Continuing: 𝑎2𝑛+1 = (−1)𝑛 

(2𝑛 + 1)! . 

Thus, 𝑦 = 𝑎0 (1 − 
𝑥
2!

2
+ 𝑥

4!
4

− …) + 𝑎1 (𝑥 − 
𝑥
3!

3
+ 𝑥

5!
5 

− …) = 𝑎0 cos(𝑥) + 𝑎1 sin(𝑥). 

Of course, this is the answer we knew we should get for this DE. 

Example 2. Solve 𝑦′ = 𝑥2𝑦. 
∞ 

Solution: Try 𝑦 = ∑ 𝑎𝑛𝑥𝑛. 
0 

∞ ∞ 

So, 𝑦′ = ∑ 𝑛𝑎𝑛𝑥𝑛−1 = 𝑎1 + 2𝑎2𝑥 + ∑(𝑛 + 1)𝑎𝑛+1𝑥𝑛. 
0 2 

∞ 

Substitution: 𝑦′ − 𝑥2𝑦 = 0 ⇒ 𝑎1 + 2𝑎2𝑥 + ∑[(𝑛 + 1)𝑎𝑛+1 − 𝑎𝑛−2]𝑥𝑛 = 0. 
2 

All the coefficients are 0 gives the recurrence relations: 
𝑎𝑛−2𝑎1 = 0, 𝑎2 = 0, (𝑛 + 1)𝑎𝑛+1 − 𝑎𝑛−2 = 0 ⇒ 𝑎𝑛+1 = 𝑛 + 1. 

𝑎0 𝑎3 𝑎0 𝑎0Pick an arbitrary 𝑎0. The recurrence relations imply 𝑎3 = 3 , 𝑎6 = = 3 =6 6 ⋅ 32 ⋅ 2! . 
𝑎6 𝑎0 𝑎0 𝑎0Continuing: 𝑎9 = = 3! , 𝑎12 = 4! , … , 𝑎3𝑛 = 9 33 ⋅ 34 ⋅ 3𝑛 ⋅ 𝑛! . 

𝑎1 = 0 ⇒ 𝑎4 = 0 ⇒ 𝑎7 = 0 … 

𝑎2 = 0 ⇒ 𝑎5 = 0 ⇒ 𝑎8 = 0 … 
∞ 𝑥3𝑛 

Thus, 𝑦 = 𝑎0 ∑ .3𝑛 ⋅ 𝑛! = 𝑎0𝑒𝑥3/3 

0 

Of course, this equation is separable and you can check our answer using separation of 
variables. 

3 Regular Singular Points 

𝑦″ + 
𝑝(𝑥)

𝑥 
𝑦′ + 

𝑞(𝑥) Consider the DE Because the coefficients are discontinuous at𝑥2 
𝑦 = 0. 

𝑥 = 0 we call 0 a singular point. If 𝑝(𝑥) and 𝑞(𝑥) are analytic (in particular if they are 
polynomials) then 𝑥 = 0 is a called a regular singular point. 
In this case, we only look for solutions for 𝑥 > 0. 

Example 3. Solve 𝑦″ + 
𝑝
𝑥
0 𝑦′ + 𝑥

𝑞0
2 

𝑦 = 0, where 𝑝0, 𝑞0 are constants. 
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Solution: Because 𝑝0 and 𝑞0 are constants, it turns out, it will work if we guess a solution 
of the form 𝑦 = 𝑥𝑟. 
Try 𝑦 = 𝑥𝑟. 
Substitution: 𝑟(𝑟 − 1)𝑥𝑟−2 + 𝑝0𝑟𝑥𝑟−2 + 𝑞0𝑥𝑟−2 = 0. 
This implies 

𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0 = 0. (1) 

This is called the indicial equation. 
If the roots are real and different we have two solutions. 
If the roots are complex, say 𝑟 = 𝑎 ± 𝑖𝑏, we have the solution 

𝑧(𝑥) = 𝑥𝑎+𝑖𝑏 = 𝑥𝑎𝑒𝑖𝑏 log 𝑥 = 𝑥𝑎(cos(𝑏 log 𝑥) + 𝑖 sin(𝑏 log 𝑥)). 
Likewise for 𝑥𝑎−𝑖𝑏. And, just like CC homogeneous linear DEs, this means we have two real 
solutions 

𝑦1(𝑥) = 𝑥𝑎 cos(𝑏 log 𝑥) and 𝑦2(𝑥) = 𝑥𝑎 sin(𝑏 log 𝑥). 

From now on we will focus on equations with real roots. 

3.1 Bessel’s equation 

Example 4. (Bessel equation of order m) 

Solve 𝑥2𝑦″ + 𝑥𝑦′ + (𝑥2 − 𝑚2)𝑦 = 0. (Note, 𝑥 = 0 is a regular singular point.) 

Solution: A simple 𝑦 = 𝑥𝑟 won’t work, instead we need the Frobenius solution. That is 
𝑥𝑟 times a power series: 

∞ ∞
𝑦 = 𝑥𝑟 ∑ 𝑎𝑛𝑥𝑛 = ∑ 𝑎𝑛𝑥𝑛+𝑟 

0 0 

Note, this is not a power series if 𝑟 is not an integer. Also, without loss of generality we 
can require 𝑎0 ≠ 0. We get: 

∞ ∞
𝑥2𝑦″ = ∑(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑎𝑛𝑥𝑛+𝑟 = 𝑟(𝑟 − 1)𝑎0𝑥𝑟 + (𝑟 + 1)𝑟𝑎1𝑥𝑟+1 + ∑(𝑛 + 𝑟)(𝑛 + 𝑟 − 1)𝑎𝑛𝑥𝑛+𝑟 

0 2 
∞ ∞

𝑥𝑦′ = ∑(𝑛 + 𝑟)𝑎𝑛𝑥𝑛+𝑟 = 𝑟𝑎0𝑥𝑟 + (𝑟 + 1)𝑎1𝑥𝑟+1 + ∑(𝑛 + 𝑟)𝑎𝑛𝑥𝑛+𝑟 

0 2 
∞ ∞

𝑥2𝑦 = ∑ 𝑎𝑛𝑥𝑛+𝑟+2 = ∑ 𝑎𝑛−2𝑥𝑛+𝑟 

0 2 
∞ 

𝑚2𝑎𝑛𝑥𝑛+𝑟 = 𝑚2𝑎0𝑥𝑟 + 𝑚2𝑎1𝑥𝑟+1 + 
∞ 

𝑚2𝑎𝑛𝑥𝑛+𝑟 𝑚2𝑦 = ∑ ∑ 
0 2 

Substituting into the DE we get 

[𝑟(𝑟 − 1) + 𝑟 − 𝑚2]𝑎0𝑥𝑟 + [(𝑟 + 1)𝑟 + (𝑟 + 1) − 𝑚2]𝑎1𝑥𝑟+1 

∞ 

+ ∑[((𝑛 + 𝑟)(𝑛 + 𝑟 − 1) + (𝑛 + 𝑟) − 𝑚2)𝑎𝑛 + 𝑎𝑛−2]𝑥𝑛+𝑟 = 0. 
2 
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Cleaning things up and setting coefficients to 0, we get 

(𝑟2 − 𝑚2)𝑎0 = 0, ((𝑟 + 1)2 − 𝑚2)𝑎1 = 0, ((𝑛 + 𝑟)2 − 𝑚2)𝑎𝑛 + 𝑎𝑛−2 = 0. 

Since we assume 𝑎0 ≠ 0, The first equation, (𝑟2 − 𝑚2)𝑎0 = 0 implies 𝑟2 − 𝑚2 = 0, i.e. 
this determines the possible values of 𝑟. The equation 𝑟2 − 𝑚2 = 0 is called the indicial 
equation. 

Example 5. Find the solution for 𝑚 = 1/3 in the above example. 
Solution: Take 𝑎0 ≠ 0 arbitrary. The indicial equation 𝑟2 − 𝑚2 = 0 implies 𝑟 = ±1/3. 
Take 𝑟 = 1/3: The equation ((𝑟 + 1)2 − 𝑚2)𝑎1 = 0 implies 𝑎1 = 0.

𝑎𝑛−2The general recurrence relation is 𝑎𝑛 = −(𝑛 + 𝑟)2 − 𝑚2 
. 

Using 𝑎1 = 0, this implies 𝑎3 = 𝑎5 = 𝑎7 = … = 0. 

Starting with 𝑎0, the recurrence relation implies 𝑎2 = −(2 + 1/3) 
𝑎0

2 − 1/9 , etc. That is, it 

gives all the values 𝑎2, 𝑎4, 𝑎6, … 

Likewise for 𝑟 = −1/3. 
This gives us two independent solutions to the linear DE. 

Example 6. Take 𝑚 = 1/2 and find the solution. 
Solution: The indicial equation 𝑟2 − 1/4 = 0 implies 𝑟 = ±1/2. 
Take 𝑟 = −1/2: Pick an arbitrary value for 𝑎0. The recurrence relation then implies 

𝑎2 = − 
4𝑎0 𝑎4 = − 

4𝑎2 …32 − 1, 72 − 1, 

The equation ((𝑟 + 1)2 − 𝑚2)𝑎1 = 0 shows that 𝑎1 can also be arbitrary. The recurrence 
equation then determines 

𝑎3 = −4𝑎1/(52 − 1), 𝑎5 = … , 𝑎7 = … 

So, the solution 𝑦(𝑥) = ∑ 𝑎𝑛𝑥𝑛+𝑟 has two arbitrary constants, 𝑎0, 𝑎1. 
Note, if we take 𝑟 = 1/2, we get the same solution as with 𝑟 = −1/2 when 𝑎0 = 0 and 𝑎1 is 
arbitrary. 

Example 7. Repeat the above examples with 𝑚 = 1. 
Solution: Indicial equation: 𝑟2 − 𝑚2 = 0 ⇒ 𝑟 = ±1.

𝑎0 𝑎2Take 𝑟 = 1, 𝑎0 ≠ 0: ⇒ 𝑎2 = −32 − 1, 𝑎4 = −52 − 1 
… 

The equation ((𝑟 + 1)2 − 𝑚2)𝑎1 = 0 ⇒ 𝑎1 = 0. 
The recurrence relation the implies 𝑎3 = 0, 𝑎5 = 0, …. 

∞ 

Thus, we have a solution 𝑦1(𝑥) = ∑ 𝑎2𝑛𝑥2𝑛+1. 
𝑛=0 
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Take 𝑟 = −1 and 𝑎0 ≠ 0: The recurrence equation 𝑎2 = −(2 + 𝑟) 
𝑎0

2 − 1 
doesn’t work because 

the denominator is 0. 
There is a trick, called reduction of order to deal with this. 
Try 𝑦2(𝑥) = 𝑣(𝑥)𝑦1(𝑥). Substituting 𝑦2 into the DE produces the following 

𝑦1𝑣″ + (2𝑦1
′ + 1/𝑥)𝑣′ = 0. 

Now, let 𝑢 = 𝑣′ ⇒ 𝑦1𝑢′ + (2𝑦1
′ + 1/𝑥)𝑢 = 0. This is a first-order linear, homogeneous 

DE, i.e., we have reduced the order. 
∞ 

This leads to, 𝑦2(𝑥) = 𝐶1𝑦1(𝑥) ln 𝑥 + 𝑥−1 ∑ 𝑏𝑛𝑥𝑛. 
𝑛=0 

Substitution into the gives relations for 𝐶1 and 𝑏𝑛. 

Example 8. Repeat the above examples with 𝑚 = 0. 
Solution: Indicial equation: 𝑟2 = 0 ⇒ repeated roots. 
Take 𝑟 = 0, 𝑎0 ≠ 0: As in the previous examples, this gives us a solution 𝑦1(𝑥). 

∞ 

Reduction of order leads to 𝑦2(𝑥) = 𝑦1 ln 𝑥 + ∑ 𝑏𝑛𝑥𝑛. Substitution gives relations for 𝑏𝑛. 
0 

Note: In general, if the roots differ by an integer the recurrence relations can sometimes 
run into trouble. You can read Sections 3.3 and 3.4 of Edwards and Penney or look online 
for details. 
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