ES.1803 Linear Algebra Solutions, Spring 2024

Problem 1.

(a) Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & -10 \\ 3 & -1 \end{bmatrix}$.

Solution: Characteristic equation: $\lambda^2 + 29 = 0 \implies \lambda = \pm \sqrt{29} i.$

Basic eigenvectors (bases of Null($A - \lambda I$)): We do this using the shortcut for 2×2 matrices instead of row reduction.

$$\begin{split} \lambda &= \sqrt{29}\,i; \quad (A - \lambda) = \begin{bmatrix} 1 - \sqrt{29}i & -10 \\ 3 & -1 - \sqrt{29}i \end{bmatrix}. \text{ Basic eigenvector: } \mathbf{v} = \begin{bmatrix} 1 + \sqrt{29}i \\ 3 \end{bmatrix}. \text{ (Or we could take } \begin{bmatrix} 10 \\ 1 - \sqrt{29}i \end{bmatrix}.) \end{split}$$

 $\lambda = -\sqrt{29}i: \quad \text{Use complex conjgate, basic eigenvector: } \overline{\mathbf{v_1}} = \begin{bmatrix} 1 - \sqrt{29} \\ 3 \end{bmatrix}.$

(b) Find the eigenvalues and eigenvectors of $A = \begin{bmatrix} -8 & 7 \\ 1 & -2 \end{bmatrix}$.

Solution: Characteristic equation: $\lambda^2 + 10\lambda + 9 = 0 \implies \lambda = -1, -9.$

Basic eigenvectors (bases of Null($A - \lambda I$)): We do this using the shortcut for 2×2 matrices instead of row reduction.

$$\lambda = -1: (A - \lambda I) = \begin{bmatrix} -7 & 7\\ 1 & -1 \end{bmatrix}. \text{ Basic eigenvector: } \mathbf{v} = \begin{bmatrix} 1\\ 1 \end{bmatrix}.$$
$$\lambda = -9: (A - \lambda I) = \begin{bmatrix} 1 & 7\\ 1 & 7 \end{bmatrix}. \text{ Basic eigenvector: } \mathbf{v} = \begin{bmatrix} 7\\ -1 \end{bmatrix}.$$

Problem 2.

Suppose that the matrix B has eigenvalues 2, 7 and 7, with eigenvectors

		1	5
-1	,	0	1
0		1	0

respectively.

(a) Calculate e^{Bt} .

Solution: S = matrix with eigenvectors as columns $= \begin{bmatrix} 1 & 1 & 5 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$.

 $\Lambda = \text{diagonal matrix of eigenvalues} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix}.$

By diagonalization, $B = S\Lambda S^{-1}$. So,

$$e^{Bt} = Se^{\Lambda t}S^{-1} = \frac{1}{6} \begin{bmatrix} 1 & 1 & 5\\ -1 & 0 & 1\\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} e^{2t} & 0 & 0\\ 0 & e^{7t} & 0\\ 0 & 0 & e^{7t} \end{bmatrix} \begin{bmatrix} 1 & -5 & 1\\ 0 & 0 & 6\\ 1 & 1 & -1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} e^{2t} + 5e^{7t} & -5e^{2t} + 5e^{7t} & -e^{2t} + e^{7t}\\ -e^{2t} + e^{7t} & 5e^{2t} + e^{7t} & e^{t} - e^{7t}\\ 0 & 0 & 6e^{7t} \end{bmatrix}.$$

(Really, the unmultiplied out form is the better answer!)

(b) What are the eigenvalues and eigenvectors of e^{Bt} ?

Solution: Looking at the diagonalization $e^{Bt} = Se^{\Lambda t}S^{-1}$ it is clear the eigenvalues are e^t , e^{7t} , e^{7t} and the corresponding eigenvectors are the same as those of B.

(c) Give an argument based on transformations why $B = \begin{bmatrix} 1 & 1 & 5 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} 1 & 1 & 5 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}^{-1}$ has the eigenvalues and eigenvectors given in Part (a).

Solution: We need to show
$$B\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} = \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$$
, $B\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} = 7\begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix}$ and $B\begin{bmatrix} 5\\ 1\\ 0 \end{bmatrix} = 7\begin{bmatrix} 5\\ 1\\ 0 \end{bmatrix}$.

For writing ease, we'll write $B = S\Lambda S^{-1}$. The argument is the same for all three eigenvectors, so we'll just do the first one.

Since
$$S \begin{bmatrix} 1\\0\\0 \end{bmatrix} = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$$
 (first column of S), S^{-1} the opposite mapping: $S^{-1} \begin{bmatrix} 1\\-1\\0 \end{bmatrix} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}$.

We also know the diagonal matrix Λ maps $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$.

We can now see how $B = S\Lambda S^{-1}$ maps $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$.

$$S\Lambda S^{-1} \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} = S\Lambda \begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix} = S \begin{bmatrix} 2\\ 0\\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}.$$

This shows $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ is an eigenvector of *B* with eigenvalue 2. The other eigenvalue/eigenvector 0 pairs behave the same way.

(d) What is the solution to $\mathbf{x}' = B\mathbf{x}$ with $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$?

Solution: Solution is

$$\begin{split} \mathbf{x}(t) &= e^{Bt} \mathbf{x_0} = \frac{1}{6} \begin{bmatrix} e^t + 5e^{7t} & -5e^t + 5e^{7t} & -e^t + e^{7t} \\ -e^t + e^{7t} & 5e^t + e^{7t} & e^t - e^{7t} \\ 0 & 0 & 6e^{7t} \end{bmatrix} \\ &= \frac{1}{6} \begin{bmatrix} e^t + 5e^{7t} & -5e^t + 5e^{7t} \\ -e^t + e^{7t} & 5e^t + e^{7t} \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = \boxed{\frac{1}{3} \begin{bmatrix} e^t + 5e^{7t} \\ -e^t + e^{7t} \\ 0 \end{bmatrix}}. \end{split}$$

(e) Decouple the system $\mathbf{x}' = B\mathbf{x}$. That is, make a change of variables and write the DE in the new variables.

Solution: Decoupling is just the change of variables $\mathbf{u} = S^{-1}\mathbf{x}$. So,

$$\mathbf{u} = S^{-1}\mathbf{x} \iff \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 1 & 1 & 5 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \\ z \end{bmatrix} \iff u = x/6 - 5y/6 + z/6; \ v = z; \ w = x/6 + y/6 - z/6.$$

In these coordinates the decoupled system is $\mathbf{u}' = \Lambda \mathbf{u}$:

$$\begin{bmatrix} u' \\ v' \\ w' \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix}.$$

Problem 3.

Let $R = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ and suppose R is the reduced row echelon form for A.

(a) What is the rank of A?

Solution: A and R have the same rank. Two pivots in R implies rank = 2.

(b) Find a basis for the null space of A.

Solution: A and R have the same null space. The third and fourth variables are free. The strategy is to set one free variable to 1 and the others to 0 and solve for the pivot variables.

One way to do this computation is to write out the matrix multiplication as a linear combination of the columns and solve by inspection.

For example, set $x_3 = 1$, $x_4 = 0$ and solve for x_1 and x_2 :

$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \\ 1 \\ 0 \end{vmatrix} = \mathbf{0} \quad \Rightarrow x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} = \mathbf{0}$$

By inspection we can see that $x_1 = -2$, $x_2 = -3$. So, one basis vector is $\begin{bmatrix} -3\\ -3\\ 1\\ 0 \end{bmatrix}$.

Similarly, with $x_3 = 0$, $x_4 = 1$ we get a basis vector $\begin{bmatrix} -3\\ -1\\ 0\\ 1 \end{bmatrix}$. Thus a basis is $\begin{bmatrix} -2\\ -3\\ 1\\ 0\\ 1 \end{bmatrix}$, $\begin{bmatrix} -3\\ -1\\ 0\\ 1 \end{bmatrix}$.

One simple way to present this is to show all the work underneath the columns, i.e.,

$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 3 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ -2 & -3 & 1 & 0 \\ -3 & -1 & 0 & 1 \end{bmatrix}$$

(c) Suppose the column space of A has basis $\begin{bmatrix} 1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\1 \end{bmatrix}$. Find a possible matrix for A. That

is, give a matrix with RREF R and the given column space.

Solution: Looking at R, Columns 1 and 2 are pivot columns. We put the given basis vectors in those columns:

$$A = \begin{bmatrix} 1 & 3 & * & * \\ 1 & 1 & * & * \\ 0 & 1 & * & * \end{bmatrix}$$

The free columns of R are linear combinations of the pivot columns and those of A are the same linear combinations. In R it is clear that

$$\operatorname{Col}_3 = 2 \cdot \operatorname{Col}_1 + 3 \cdot \operatorname{Col}_2$$
 and $\operatorname{Col}_4 = 3 \cdot \operatorname{Col}_1 + \operatorname{Col}_2$.

So,

$$A = \begin{bmatrix} 1 & 3 & 11 & 6 \\ 1 & 1 & 5 & 4 \\ 0 & 1 & 3 & 1 \end{bmatrix}.$$

(d) Find a matrix with the same reduced echelon form but such that $\begin{bmatrix} 1\\1\\1\end{bmatrix}$ and $\begin{bmatrix} 1\\2\\3\end{bmatrix}$ are in

its column space.

Solution: We found the relationships between the columns in Part (c). So we put the given columns as pivot columns and construct the free columns from these relationships:

 $\begin{bmatrix} 1 & 1 & 5 & 4 \\ 1 & 2 & 8 & 5 \\ 1 & 3 & 11 & 6 \end{bmatrix}$

Note: you could put any other basis for the subspace generated by $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$ in the

pivot columns and adjust the free columns accordingly.

Problem 4.

Suppose $A = \begin{bmatrix} a & b & c \\ 0 & 2 & e \\ 0 & 0 & 3 \end{bmatrix}$.

(a) What are the eigenvalues of A?

Solution: For an upper triangular matrix the eigenvalues are the diagonal entries: a, 2, 3.

(b) For what value (or values) of a, b, c, e is A singular (non-invertible)?

Solution: det(A) = product of eigenvalues. So A is singular when <math>a = 0. The parameters b, c, e can take any values.

(c) What is the minimum rank of A (as a, b, c, e vary)? What's the maximum?

Solution: When a = 0, the null space is dimension 1, so rank =2.

When $a \neq 0$, A is invertible, so has rank = 3.

(d) Suppose a = -5. In the system $\mathbf{x}' = A\mathbf{x}$, is the equilibrium at the origin stable or unstable.

Solution: The two positive eigenvalues imply the system is unstable.

Problem 5.

Suppose that
$$A = S \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} S^{-1}$$

(a) What are the eigenvalues of A?

Solution: The eigenvalues are the same as the diagonal matrix, i.e., 1, 2, 3.

(b) Express A^2 and A^{-1} in terms of S.

Solution:
$$A^2 = S \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix} S^{-1}; \quad A^{-1} = S \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} S^{-1}.$$

(c) What would I need to know about S in order to write down the most rapidly growing exponential solution to $\mathbf{x}' = A\mathbf{x}$?

Solution: You need to know the eigenvector that goes with the eigenvalue 3. That is, you need to know the third column of S.

Problem 6.

(a) An orthogonal matrix is one where the columns are orthonormal (mutually orthogonal and unit length). Equivalently, S is orthogonal if $S^{-1} = S^T$.

Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Find an orthogonal matrix S and a diagonal matrix Λ such that $A = S\Lambda S^{-1}$

Solution: The problem is asking us to diagonalize A, taking care that the matrix S is orthogonal.

A has characteristic equation: $\lambda^2 - 2\lambda - 3$. So it has eigenvalues $\lambda_1 = -1$, $\lambda_2 = 3$. By inspection (or computation), we have eigenvectors $\mathbf{v_1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

These are clearly orthogonal to each other. We normalize their lengths and use the normalized eigenvectors in the matrix S.

$$S = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}; \quad \Lambda = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \quad \Rightarrow A = S\Lambda S^{-1}$$

Note: A is a symmetric matrix. It turns out that symmetric matrix has an orthonormal set of basic eigenvectors.

(b) Decouple the equation $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.

Solution: The decoupling change of variable is $\mathbf{u} = S^{-1}\mathbf{x} \iff \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

The decoupled system is $\mathbf{u}' = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \mathbf{u} \iff \begin{cases} u'_1 = -u_1 \\ u'_2 = 3u_2 \end{cases}$.

Problem 7.

Suppose A has eigenvalues -2 and -3 with corresponding eigenvectors $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

(a) Compute A^{-1} explicitly.

Solution: We know $A = S\Lambda S^{-1}$, where $S = \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$ is the matrix of eigenvectors and $\Lambda = \begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix}$. So, $A^{-1} = S\Lambda^{-1}S^{-1}$. Computing, we find $S^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$ and $A^{-1} = S\Lambda^{-1}S^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} -1/2 & 0 \\ 0 & -1/3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{18} \begin{bmatrix} -7 & -1 \\ -2 & -8 \end{bmatrix}$. (b) Consider the system $\begin{bmatrix} x' \\ y' \end{bmatrix} = A \begin{bmatrix} x \\ y \end{bmatrix}$. Find a change of coordinates u = ax + by, v = cx + dy

so that in these new coordinates the system becomes
$$u' = r_1 u$$
 and $v' = r_2 v$. Also give the

values of r_1 and r_2 . Solution: $\begin{bmatrix} u \\ v \end{bmatrix} = S^{-1} \begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$. Thus, $\boxed{u = x/3 + y/3}$; v = 2x/3 - y/3, r_1 and r_2 are the eigenvalues $\boxed{r_1 = -2, r_2 = -3}$.

Problem 8.

 $Let A = \begin{bmatrix} 1 & 4 & 2 & 2 \\ 2 & 8 & 1 & 9 \\ 1 & 4 & 1 & 7 \end{bmatrix}$

(a) Put A in reduced row echelon form.

Solution:

(b) Give a basis for the column space of A.

Solution: The pivot columns are Columns 1 and 3. These columns of A give a basis for

the column space:

$$\begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1 \end{bmatrix}.$$

Problem 9.

The matrix A has reduced row echelon form $R = \begin{bmatrix} 1 & 5 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

- (a) What is the rank of A?
- **Solution:** Two pivots, so rank = 2.
- (b) Find a basis for the null space of A.

Solution: The reduced matrix and A have the same null space. The free variables are x_2 and x_4 . Using our usual notation to set them alternately to 1 and 0, we find

Γ1	5	0	ך 4
0	0	1	2
L 0	0	0	$0 \rfloor$
x_1	x_2	x_3	x_4
-5	1	0	0
-4	0	-2	1

The vectors $\begin{bmatrix} -5\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} -4\\0\\-2\\1 \end{bmatrix}$ form a basis of the null space.

(c) Find a matrix A with reduced row echelon form R and such that the equations $A\mathbf{x} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$

and $A\mathbf{x} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$ can both be solved.

Solution: We can only solve $A\mathbf{x} = \mathbf{b}$ if \mathbf{b} is in the column space. So we put the two vectors above as the pivot columns of $A \begin{bmatrix} 1 & * & 0 & * \\ 0 & * & 1 & * \\ 1 & * & 0 & * \end{bmatrix}$. The free columns must satisfy the same relations with the pivot columns as R. These were found when we found the null space. That is, $\operatorname{Col}_2 = 5 \operatorname{Col}_1$ and $\operatorname{Col}_3 = 4 \operatorname{Col}_1 + 2 \operatorname{Col}_3$. We get $A = \begin{bmatrix} 1 & 5 & 0 & 4 \\ 0 & 0 & 1 & 2 \\ 1 & 5 & 0 & 4 \end{bmatrix}$.

Problem 10. (a) Consider the ellipse shown. The axes are drawn in with their lengths and endpoints.

Find a matrix A such that multiplication by A transforms this ellipse into the unit circle.

Solution: We can write A in one go by noting that we want A to map the ellipse's major axis to $\begin{bmatrix} 1 & 0 \end{bmatrix}^T$ and its minor axis to $\begin{bmatrix} 0, 1 \end{bmatrix}^T$. We are given these axes, so we can easily write the inverse matrix that sends the standard basis to the axes of the ellipse.

$$A^{-1} = \begin{bmatrix} 4 & -6/5 \\ 3 & 8/5 \end{bmatrix} \Rightarrow \begin{bmatrix} A = \frac{1}{10} \begin{bmatrix} 8/5 & 6/5 \\ -3 & 4 \end{bmatrix} = \begin{bmatrix} 8/50 & 6/50 \\ -3/10 & 4/10 \end{bmatrix}.$$

(You could also find this as a rotation by $-\tan^{-1}(3/4)$ followed by scaling x by 1/5 and y by 1/2.)

(b) Suppose A is a matrix with eigenvalue λ and corresponding eigenvector \mathbf{v} . Show that the block matrix $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix}$ has eigenvalues $\pm \lambda$ and find an eigenvector for each one.

Solution: Since $A\mathbf{v} = \lambda \mathbf{v}$, we have $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} A\mathbf{v} \\ A\mathbf{v} \end{bmatrix} = \begin{bmatrix} \lambda \mathbf{v} \\ \lambda \mathbf{v} \end{bmatrix}$. So, $\begin{bmatrix} \mathbf{v} \\ \mathbf{v} \end{bmatrix}$ is an eigenvector with eigenvalue λ .

Likewise, $\begin{bmatrix} 0 & A \\ A & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v} \\ -\mathbf{v} \end{bmatrix} = \begin{bmatrix} -A\mathbf{v} \\ A\mathbf{v} \end{bmatrix} = \begin{bmatrix} -\lambda\mathbf{v} \\ \lambda\mathbf{v} \end{bmatrix} = -\lambda \begin{bmatrix} \mathbf{v} \\ -\mathbf{v} \end{bmatrix}$. We've found an eigenvector with eigenvalue $-\lambda$.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.