
ES.1803 Practice Solutions – Final Quiz, Spring 2024 

Important: Not every topic is covered here. When preparing for the final be sure to look 
over other review materials as well as old psets and exams. 

Problem 1. For the DE 
𝑑𝑦 

𝑥 
+ 3 𝑥:𝑑𝑥 

= − 𝑦 

(a) Sketch the direction field for this DE, using (light or dotted) isoclines for the slopes -1 
and 0. 
Solution: See picture below. Isoclines: 𝑦′ = −𝑥

𝑦 + 3𝑥 = 𝑚 ⇒ 𝑦 = 3𝑥2 − 𝑚𝑥. 
(Note problem at (0, 0).) 
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(b) For the solution curve passing through the point (1,2): If Euler’s method with step-size 
ℎ = 0.1 were used to approximate 𝑦(1.1), would the approximation come out too high or 
too low? Explain. 
Solution: If 𝑦(1) = 2 then 𝑦′(1) = −2

1 + 3 ⋅ 1 = 1. 
𝑦″(1) = −𝑥𝑦′−𝑦 

𝑥2 + 3, so 𝑦″(1) = 4 > 0. This shows the integral curve is concave up at (1, 2), 
which implies the estimate is probably too low. 
(c) For the solution with 𝑦(1) = 2, compute the Euler approximation to 𝑦(1.1) using 
step-size ℎ = 0.1. 
Solution: This takes only one step, so we don’t bother with a table. Euler: 

𝑦1 = 𝑦0 + ℎ𝑓(𝑥0, 𝑦0) = 2 + 0.1 ⋅ 𝑓(1, 2) = 2.1 ⇒ 𝑦(1.1) ≈ 2.1. 

(d) The functions 𝑦1 = 𝑥2 and 𝑦2 = 𝑥2 + 𝑥
1 are solutions to this DE. If 𝑦 = 𝑦(𝑥) is the 

solution satisfying the IC 𝑦(1) = 1.5, show that 100 ≤ 𝑦(10) ≤ 100.1. Do we need to include 
the equal signs in this inequality? Why or why not? 

Solution: The picture below shows the plots of the 2 given solutions. 
The dotted line indicates that (by the Existence and uniqueness theorem) the solution with 
IC (1,1.5) must stay between these two solutions. So, 𝑦1(10) < 𝑦(10) < 𝑦2(10). Thus, 
100 < 𝑦(10) < 100.1. 
Since the solutions can’t touch, we don’t need the equal signs. 

1 
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(e) Find the general solution the DE and verify the prediction of Part (b). 
Solution: This equation is first-order linear, so we can use the variation of parameters 

formula to solve it. In standard form the DE is 𝑦′ + 𝑥
1 𝑦 = 3𝑥. 

𝑦ℎ(𝑥) = ∫ 𝑒−1/𝑥 𝑑𝑥 = 1/𝑥.Homogeneous solution: 

Variation of parameters: 𝑦(𝑥) = 𝑦ℎ(𝑥) ∫ 3𝑥2 𝑑𝑥 + 𝑐𝑦ℎ(𝑥) = 𝑥2 + 𝑐/𝑥. 

(An even quicker method would be to use the linearity and the two solutions given in Part 
(d) to get the general homogeneous solution: 𝑦ℎ = 𝑐(𝑦1 − 𝑦2) = 𝑐/𝑥. 
Then, the general solution is 𝑦(𝑥) = 𝑥2 + 𝑐/𝑥. (particular plus homeogeneous.) 

Problem 2. Let 𝑃(𝐷) = 𝐷2 + 𝑏𝐷 + 5𝐼 where 𝐷 = 𝑑𝑡
𝑑 . 

(a) For what range of the values of 𝑏 ≥ 0 will the solutions to 𝑃 (𝐷)𝑦 = 0 exhibit 
oscillatory behavior? 

−𝑏 ± 
√

𝑏2 − 20 Solution: Characteristic polynomial: 𝑃(𝑟) = 𝑟2 + 𝑏𝑟 + 5. Roots: 𝑟 = . 

Solutions are oscillatory when 𝑟 is complex. i.e., if 𝑏2 − 20 < 0 ⇒ 𝑏 < 
√

20 = 2
2√

5. 
(b) For 𝑏 = 4, solve the DEs (i) 𝑃 (𝐷)𝑦 = 4 𝑒2𝑡 sin(𝑡) (ii) 𝑃 (𝐷)𝑦 = 4 𝑒2𝑡 cos(𝑡) 

Write your answers in both amplitude-phase and rectangular form. 
Solution: (i) We’ll complexify and use the exponential response formula. 
Complexify: 𝑃 (𝐷)𝑧 = 𝑒(2+𝑖)𝑡, where 𝑦 = Im(𝑧) 

ERF: 𝑧𝑝(𝑡) = 4 𝑒(2+𝑖)𝑡
𝑃 (2+𝑖) . 

Calculate: 𝑃(2 + 𝑖) = (2 + 𝑖)2 + 4(2 + 𝑖) + 5 = 16 + 8𝑖 = 8(2 + 𝑖) 

𝑃(2 + 𝑖) = 8(2 + 𝑖), |𝑃 (2 + 𝑖)| = 8
√

5, 𝜙 = Arg(𝑃 (2 + 𝑖)) = tan−1(1/2) in Q1 . 

4𝑒2𝑡𝑒𝑖(𝑡−𝜙) 𝑒2𝑡𝑒𝑖(𝑡−𝜙) 𝑒2𝑡 

So, 𝑧𝑝(𝑡) = = ⇒ 𝑦𝑝(𝑡) = Im(𝑧𝑝) = 2
√

5 
sin(𝑡 − 𝜙) .8

√
5 2

√
5 

(Rectangular form is below.) 
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𝑒2𝑡 

(ii) We can reuse 𝑧𝑝 from Part (i): 𝑦𝑝(𝑡) = Re(𝑧𝑝) = 2
√

5 
cos(𝑡 − 𝜙) . 

The problem also asks for the solution in rectangular form. We can find that from the polar 
form using trig identities or directly from the complexified solution. We’ll do the latter: 

𝑒2𝑡(cos(𝑡) + 𝑖 sin(𝑡)) (2 − 𝑖) 𝑒2𝑡 

𝑧𝑝(𝑡) = 10 
[(2 cos(𝑡) + sin(𝑡)) + 𝑖(2 sin(𝑡) − cos(𝑡))]8(2 + 𝑖) (2 − 𝑖) 

= 

𝑒2𝑡(2 sin(𝑡) − cos(𝑡)) 𝑒2𝑡(2 cos(𝑡) + sin(𝑡))Thus, (i) 𝑦𝑝(𝑡) = Im(𝑧𝑝) = , (ii) 𝑦𝑝(𝑡) = Re(𝑧𝑝) = .10 10 

(c) Given 𝑏 = 2, for what 𝜔 does 𝑃 (𝐷)𝑦 = cos(𝜔𝑡) have the biggest response? 

Solution: The sinusoidal resonse formula gives: 𝑦𝑝(𝑡) = 
cos(𝜔𝑡 − 𝜙)

|𝑃 (𝑖𝜔)| 
1 1So the amplitude of the response is 𝐴(𝜔) = |𝑃 (𝑖𝜔)| = √(5 − 𝜔2)2 + 4𝜔2 

𝐴(𝑤) has a maximum when (5 − 𝜔2)2 + 4𝜔2 has a minimum. Using simple calculus we find 

the maximum response is at 𝜔 = 
√

3. 

ω

A
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3

Amplitude of output 

Problem 3. Find the general solution to the DE (𝐷3 − 𝐼) 𝑦 = 𝑒𝑥 

Express the answer using real-valued functions only. 
Solution: Characteristic polynomial: 𝑃(𝑟) = 𝑟3 − 1. 
Roots: 𝑟 = cube roots of unity = 1, 𝑒2𝜋𝑖/3, 𝑒4𝜋𝑖/3 = 1, −2

1 + 𝑖
√
2
3 , −2

1 − 𝑖 
√
2
3 . 

√
3 

√
3𝑦ℎ(𝑥) = 𝑐1𝑒𝑥 + 𝑐2 𝑒−𝑥/2 cos (General (real) homogeneous solution: 2 

𝑥) + 𝑐3 𝑒−𝑥/2 sin ( 2 
𝑥) . 

𝑥𝑒𝑥 1Particular solution: 𝑃(1) = 0, 𝑃 ′(1) = 3 ≠ 0. So, 𝑦𝑝(𝑥) = 3𝑥𝑒𝑥.𝑃 ′(1) 
= 

General solution: 𝑦(𝑥) = 𝑦𝑝(𝑥) + 𝑦ℎ(𝑥). 

Problem 4. Let 𝐿 denote the differential operator 𝐿𝑦 = 𝐷2𝑦 − 𝑥
1 𝐷𝑦 + 4𝑥2𝑦, where 

𝑑 𝐷 = 𝑑𝑥 . 
(a) Show that the DE 𝐿𝑦 = 0 has solutions 𝑦1(𝑥) = cos (𝑥2) and 𝑦2(𝑥) = sin (𝑥2). 
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Solution: Direct calculation shows 𝐿𝑦1 = 𝐿𝑦2 = 0. 
(b) Show that the initial value problem 

𝐿𝑦 = 0, 𝑦(0) = 0, 𝑦′(0) = 0 

has more than one solution. Why doesn’t this contradict the Existence and Uniqueness 
Theorem? On what intervals does existence and uniqueness hold? 

Solution: For any 𝑐2 the function 𝑦(𝑥) = 𝑐2 sin(𝑥2) solves the IVP. 
This doesn’t violate existence and uniqueness because the coefficient 𝑝(𝑥) = 𝑥

1 is not con-
tinuous at 0. 
Existence and uniqueness holds where the coefficients are continuous, i.e., on (0, ∞) and
(−∞, 0). 

Problem 5. Suppose that a population of variable size (in some suitable units) 𝑝(𝑡) follows 
𝑑𝑝 the growth law = 𝑝3 − 4𝑝2 + 4𝑝. Without solving the DE explicitly: 𝑑𝑡 

(a) Find all critical points and classify each according to its stability type using a phase line 
diagram. 
Solution: 𝑝3 − 4𝑝2 + 4𝑝 = 𝑝(𝑝 − 2)2 ⇒ critical points are 𝑝 = 0 and 𝑝 = 2. 
By looking at the phase line we see that 0 is unstable and 2 is semi-stable. 
Here is the phase line (drawn horizontally to save space.) 

𝑥 
0 2Unstable Semistable 

(b) Draw a rough sketch (on p-vs.-t axes) of the family of solutions. What happens to the 
population in the long-run if it starts out at size 1 unit; at size 3 units ? 

Solution: By hand a rough sketch is fairly easy: First draw horizontal lines at 𝑝 = 0 and
𝑝 = 2 (the equilibrium solutions). Next draw the solutions above 𝑝 = 2 as curves curving 
upward, those between 0 and 2 are ’logistic-like’ going from 0 to 2 and those below 0 curve 
down. Below is a plot of the solutions. In the long run if 𝑝(0) = 1 then 𝑝 → 2 and if 
𝑝(0) = 3 then 𝑝 → ∞. 

p

2

0

semistable

unstable t

p

(c) Explain why the rate equation given by the DE was all we needed to get the answer to 
Part (b). 
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Solution: The rate information was all we needed to draw the phase line and determine 
the critical points and their stability types. 
(d) Now we’ll add a harvesting parameter to the system: 𝑝′ = 𝑝3 − 4𝑝2 + 4𝑝 − 𝑟. 
(i) Draw the bifurcation diagram for this system. 
(ii) Give the bifurcation points. 
(iii) For what values of 𝑟 is the population sustainable? 

Solution: (i) The critical points are 𝑝′ = 𝑝3 − 4𝑝2 + 4𝑝 − 𝑟 = 0 ⇒ 𝑟 = 𝑝3 − 4𝑝2 + 4𝑝. 
To plot this, first note that 𝑟 = 𝑝(𝑝 − 2)2. So, 𝑟 = 0 when 𝑝 = 0 or 𝑝 = 2. With calculus, 
we can find the maxima and minima for 𝑟. The only minumum occurs when 𝑝 = 2. The 
only maximum is when 𝑝 = 2/3. (So, 𝑟 = 32/27.) This helps us plot the cubic. Since 𝑟 is 
the horizontal axis, the cubic is turned sideways. 
Once we have the plot, we can add pluses and minuses indicating the regions in the 𝑟𝑝-plane 
where 𝑝′ is positive or negative. From this we can label the parts of the bifurcation diagram 
as stable or unstable. 

r

p

+

−

unstable

unstable

stable

32/27

2/3

2

(ii) There are bifurcation points at 𝑟 = 0 and 𝑟 = 32/27. 
(iii) Sustainability requires a positive stable critical point. So, this system is sustainable for 
0 < 𝑟 < 32/27. 

Problem 6. (a) Solve 2𝑦″ − 2𝑦′ − 4𝑦 = 𝛿(𝑡), with rest IC. 
Solution: The characteristic roots are 2, −1. So,the general homogeneous solution is
𝑦(𝑡) = 𝑐1𝑒2𝑡 + 𝑐2𝑒−𝑡. 
Rest IC means the pre-intial conditions are 𝑦(0−) = 0, 𝑦′(0−) = 0. 
The impulse at 𝑡 = 0 divides the problem into cases. 
Case 𝑡 < 0. On this interval, the DE and initial conditions are 

2𝑦″ − 2𝑦′ − 4𝑦 = 0, 𝑦(0−) = 0, 𝑦′(0−) = 0. 

Clearly 𝑦(𝑡) = 0, is the solution on 𝑡 < 0. 

Case 𝑡 > 0. The delta function input causes a jump at 𝑡 = 0. The post-initial conditions 
are 𝑦(0+) = 𝑦(0−) = 0, 𝑦′(0+) = 𝑦′(0−) + 1/2 = 1/2. Thus, on this interval, the DE and 
initial conditions are 

2𝑦″ − 2𝑦′ − 4𝑦 = 0, 𝑦(0+) = 0, 𝑦′(0+) = 1/2. 
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This has solution, 𝑦(𝑡) = 𝑐1𝑒2𝑡 + 𝑐2𝑒−𝑡. At 𝑡 = 0+, we get 

𝑦(0+) = 𝑐1 + 𝑐2 = 0 and 𝑦′(0+) = 2𝑐1 − 𝑐2 = 1/2. 

Solving these equations we find: 𝑐1 = 1/6, 𝑐2 = −1/6. Therefore, the full solution is 

for 𝑡 < 0 𝑦(𝑡) = {0
1
6𝑒2𝑡 − 6

1𝑒−𝑡 for 𝑡 > 0. 

(b) Solve 2𝑦″ + 2𝑦 = 𝛿(𝑡 − 3), with rest IC. 
Solution: The characteristic roots are ±𝑖. So,the general homogeneous solution is 𝑦(𝑡) = 
𝑐1 cos(𝑡) + 𝑐2 sin(𝑡). 
Rest IC means the pre-intial conditions are 𝑦(0−) = 0, 𝑦′(0−) = 0. 
The impulse at 𝑡 = 3 divides the problem into cases. 
Case 𝑡 < 3. On this interval, the DE and initial conditions are 

2𝑦″ + 2𝑦 = 0, 𝑦(0−) = 0, 𝑦′(0−) = 0. 

Clearly 𝑦(𝑡) = 0, is the solution on 𝑡 < 3. 
Looking ahead to the next case, we have 𝑦(3−) = 0, 𝑦′(3−) = 0. 

Case 𝑡 > 3. The impulse cause a jump in velocity at 𝑡 = 3. The post-initial conditions are
𝑦(3+) = 𝑦(3−) = 0, 𝑦′(3+) = 𝑦′(3−) + 1/2 = 1/2. Thus, on this interval, the DE and initial 
conditions are 

2𝑦″ + 2𝑦 = 0, 𝑦(3+) = 0, 𝑦′(3+) = 1/2. 
Because the system is time invariant, we can write the general homogeneous solution as 

𝑦(𝑡) = 𝑐1 cos(𝑡 − 3) + 𝑐2 sin(𝑡 − 3). 

Now we use the post-IC to find 𝑐1 and 𝑐2. We get 𝑐1 = 0, 𝑐2 = 1/2. Therefore, the full 
solution is 

for 𝑡 < 3 𝑦(𝑡) = {0 
1
2 sin(𝑡 − 3) for 𝑡 > 3. 

(c) Solve 𝑥′ + 𝑡𝑥 = 𝛿(𝑡 − 5) 

Solution: Using the variation of parameters formula: 𝑥ℎ(𝑡) = 𝑒− 𝑡
2 

so2 

2 2𝑥(𝑡) = 𝑒− 𝑡
2 

[∫ 𝛿(𝑡 − 5)𝑒 
𝑡2 

𝑑𝑡 + 𝑐] 

= 𝑒− 𝑡2
2 

𝑒 
25

22 𝑢(𝑡 − 5) + 𝑐𝑒− 𝑡
2 

Here we used that ∫ 𝛿(𝑡 − 𝑎) 𝑑𝑡 = 𝑢(𝑡 − 𝑎) and that 𝑒 𝑡
2
2 

𝛿(𝑡 − 5) = 𝑒 
5
2
2 

𝛿(𝑡 − 5). 

Problem 7. Let 𝑓(𝑡) be 0 for 𝑡 < 0 and 3𝑒−2𝑡 for 𝑡 > 0. Compute the generalized derivative 
of 𝑓(𝑡). 
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Solution: The function has a jump of 3 at the origin. This adds a singular part to the 
for 𝑡 < 0 generalized derivative: 𝑓′(𝑡) = 3𝛿(𝑡) + {0 

−6𝑒−2𝑡 for 𝑡 > 0 

Problem 8. For 𝑓(𝑡) = 𝑡 on 0 < 𝑡 < 1: 
(a) Sketch the following periodic extensions of 𝑓 over three or more full periods in the cases. 
(i) Even period 2 extension (ii) Odd period 2 extension (iii) Period 1 extension. 
In all three cases chose endpoint values that show where the Fourier series expansion will 
converge. (Do this without computing the Fourier series). 
Solution: The Fourier series will converge to 𝑓 except at the points of discontinuity, where 
it will converge to the midpoint of the jump. Thus cases (ii) and (iii) require some care 
with the endpoints. Here are the extensions. 

𝑡 −1 1 2 3 4 
𝑡 −1 1 2 3 4 

(i) Even period 2 extension (ii) Odd period 2 extension 

𝑡 −1 1 2 3 4 

(iii) Period 1 extension 

(b) Compute the Fourier sine series of 𝑓. 
1 1 

+ 
sin(𝑛𝜋𝑡) ) = −2(−1)𝑛 

Solution: 𝑏𝑛 = 2 ∫ 𝑡 sin(𝑛𝜋𝑡) 𝑑𝑡 = 2 (−𝑡 cos(𝑛𝜋𝑡) ∣𝑛𝜋 𝑛2𝜋2 𝑛𝜋 0 0 

∞2 (−1)𝑛+1 

Thus, on [0, 1], we have 𝑓(𝑡) = ∑ sin(𝑛𝜋𝑡). 𝜋 𝑛 𝑛=1 

̃(c) Find the periodic solution to the DE 𝑥″ + 10𝑥 = 𝑓odd(𝑡). Does near-resonance occur 
̃in this situation? If so, which frequency in the ‘driving force’ 𝑓odd(𝑡) produces it? 

Solution: The characteristic polynomial is 𝑃(𝑟) = 𝑟2 + 10. So, 

if 𝑛 = 1𝑃 (𝑖𝑛𝜋) = 10 − (𝑛𝜋)2 ⇒ |𝑃 (𝑖𝑛𝜋)| = |10 − 𝑛2𝜋2|, 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛𝜋)) = {0 

𝜋 if 𝑛 ≥ 2. 

(Note: 10 − 𝑛2𝜋2 ≠ 0 for any integer 𝑛). 
Using the SRF: The periodic solution to 𝑥″

𝑛 + 10𝑥𝑛 = sin(𝑛𝜋𝑡) is 

sin(𝑛𝜋𝑡 − 𝜙(𝑛)) sin(𝑛𝜋𝑡 − 𝜙(𝑛)) 𝑥𝑛,𝑝(𝑡) = = .|𝑃 (𝑖𝑛𝜋)| |10 − 𝑛2𝜋2| 
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Superposition (using the infinite Fourier series) gives the periodic solution to the DE: 

2 ∞ (−1)𝑛+1 2 sin(𝜋𝑡) ∞ (−1)𝑛+1
𝑥𝑝(𝑡) = ∑ sin(𝑛𝜋𝑡 − 𝜙(𝑛)) = − 

2 ∑ sin(𝑛𝜋𝑡) 𝜋 𝑛=1 
𝑛|10 − 𝑛2𝜋2| 𝜋 |10 − 𝜋2| 𝜋 𝑛=2 

𝑛|10 − 𝑛2𝜋2| 

The last expression was found by using the known values of 𝜙(𝑛). 
Since 𝜋2 ≈ 9.87 ≈ 10 the 𝑛 = 1 term produces the largest response (i.e., ’near resonance’). 

̃(d) Solve the DE 𝑥′ + 10𝑥 = 𝑓odd(𝑡). 
Solution: Note the differential operator is different than in Part (c). 
As in Part (c), once we solve 𝑥′

𝑛 + 10𝑥𝑛 = sin(𝑛𝜋𝑡) we can use superposition. 
In preparation for using the SRF we compute 

𝑃 (𝑖𝑛𝜋) = 10+𝑖𝑛𝜋; |𝑃 (𝑖𝑛𝜋)| = √102 + 𝑛2𝜋2; 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛𝜋)) = tan−1(𝑛𝜋/10) in Q1 . 

Now the SRF gives 

sin(𝑛𝜋𝑡 − 𝜙(𝑛)) sin√(𝑛𝜋𝑡 − 𝜙(𝑛))
102 + 𝑛2𝜋2 

=𝑥𝑛,𝑝(𝑡) = |𝑃 (𝑖𝑛𝜋)| 

Using superposition: 
2 ∞ (−1)𝑛+1 sin(𝑛𝜋𝑡 − 𝜙(𝑛)) 𝑥𝑝(𝑡) = ∑ .𝜋 𝑛

√
102 + 𝑛2𝜋2𝑛=1 

As a reward for dealing with a first-order system we know there can’t be near-resonance 
because the 100 + 𝑛2𝜋2 term in the denominator is never small. 

Problem 9. (a) Write down the wave equation with IC’s and BC’s for the string of length 
1, with clamped ends, wave speed 2, initially at equilibrium, struck at time 0. Then derive 
the Fourier series solution using separation of variables. 
Solution: PDE: 𝑦𝑡𝑡 = 4𝑦𝑥𝑥 

BC: 𝑦(0, 𝑡) = 𝑦(1, 𝑡) = 0 

IC: 𝑦(𝑥, 0) = 0 (initially at equilibrium) 
𝑦𝑡(𝑥, 0) = 𝑓(𝑥) (initial velocity right after being struck) 

We solve using the Fourier method of separation of variables. 
Step 1. Find separated solutions to the PDE: 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) 

Substituting into the PDE: 

⇒ 
𝑋″(𝑥) 𝑇 ″(𝑡)𝑋𝑇 ″ = 4𝑋″𝑇 = constant = −𝜆.𝑋(𝑥) 4𝑇 (𝑡) 

= 

(Since 𝑥 and 𝑡 are independent, a function of 𝑥 = function of 𝑡 implies both must be 
constant.) 

Thus we have two ODES: 𝑋″ + 𝜆𝑋 = 0, 𝑇 ″ + 4𝜆𝑇 = 0. 
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As always, we have cases. 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆 𝑥) + 𝑏 sin(

√
𝜆 𝑥), 𝑇 (𝑡) = 𝑐 cos(2

√
𝜆 𝑡) + 𝑑 sin(2

√
𝜆 𝑡). 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐 + 𝑑𝑡 
Case (iii) 𝜆 < 0: Ignore –only gives trivial modal solutions. 

Step 2. (Modal solutions) Find the separated solutions which also satisfy the BC. 
For separated solutions, the BC are 

𝑋(0) = 0, 𝑋(1) = 0. 

Case (i) BC: 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 sin(
√

𝜆) + 𝑏 sin(
√

𝜆) = 0. 
The nontrivial solutions have 𝑎 = 0, 𝑏 arbitrary and sin(

√
𝜆) = 0. This implies 

√
𝜆 = 𝑛𝜋, 

where 𝑛 = 1, 2, …. 
Index solutions by 𝑛: 𝑋𝑛(𝑥) = sin(𝑛𝜋𝑥); 𝑇𝑛(𝑡) = 𝑐𝑛 cos(2𝑛𝜋𝑡) + 𝑑𝑛 sin(2𝑛𝜋𝑡); So, 

𝑦𝑛(𝑥, 𝑡) = 𝑋𝑛(𝑥)𝑇𝑛(𝑡) = sin(𝑛𝜋𝑥)(𝑐𝑛 cos(2𝑛𝜋𝑡) + 𝑑𝑛 sin(2𝑛𝜋𝑡)). 

Case (ii) BC: 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 + 𝑏 = 0. 
Thus, 𝑎 = 0, 𝑏 = 0, i.e., there are only trivial solutions in this case. 
Case (iii) We know this case only produces trivial solutions, so we skip it. 

Step 3. Use superposition to give the general solution. 
∞

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝜋𝑥)(𝑐𝑛 cos(2𝑛𝜋𝑡) + 𝑑𝑛 sin(2𝑛𝜋𝑡)). 
𝑛=1 

Step 4. Use the initial conditions to compute the coefficients. 
∞

𝑦(𝑥, 0) = ∑ 𝑐𝑛 sin(𝑛𝜋𝑥) = 0. So 𝑐𝑛 = 0 for all 𝑛. 
𝑛=1 

∞
𝑦𝑡(𝑥, 0) = ∑ 𝑑𝑛2𝑛𝜋 sin(𝑛𝜋𝑥) = 𝑓(𝑥). So 𝑑𝑛2𝑛𝜋 are the Fourier sine coefficients of the 

𝑛=1 
function 𝑓(𝑥) on [0, 1]. That is, 

𝑑𝑛2𝑛𝜋 = 2 ∫
1

𝑓(𝑥) sin(𝑛𝜋𝑥) 𝑑𝑥 or 𝑑𝑛 = 
1 

𝑓(𝑥) sin(𝑛𝜋𝑥) 𝑑𝑥 .𝑛𝜋
1 ∫ 

0 0 

With 𝑑𝑛 as just defined, the Fourier solution to the problem is 

∞
𝑦(𝑥, 𝑡) = ∑ 𝑑𝑛 sin(𝑛𝜋𝑥) sin(2𝑛𝜋𝑡) . 

𝑛=1 

(b) Give the explicit solution to the equation of Part (a) when the initial velocity is given 
by 𝑓(𝑥) = 𝑥 on 0 < 𝑥 < 1 (as if that were possible!). 
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Solution: From the solution to Part (a) and the integral table we have 

1 (−1)𝑛+1 1 1 (−1)𝑛+1
∫ 𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥 = ⇒ 𝑑𝑛 = 𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥 = .𝑛𝜋 𝑛𝜋 

∫ 𝑛2𝜋2
0 0 

∞ ∞ (−1)𝑛+1 

Thus, 𝑦(𝑥, 𝑡) = ∑ 𝑑𝑛 sin(𝑛𝜋𝑥) sin(2𝑛𝜋𝑡) = ∑ sin(𝑛𝜋𝑥) sin(2𝑛𝜋𝑡) .𝑛2𝜋2
𝑛=1 𝑛=1 

Problem 10. Find the general real-valued solution to the system of DEs: 

𝑥′ = 𝑥 − 2𝑦, 𝑦′ = 4𝑥 + 3𝑦. 

Solution: Matrix equation: x ′ = [1
4 

−2
3 

] x. 

Characteristic equation: 𝑃(𝜆) = 𝜆2 − 4𝜆 + 11 = 0. 
Eigenvalues: 𝜆 = 2 ± 

√
7𝑖. 

[−1 − 
√

7𝑖 −2Basic eigenvector for 𝜆 = 2 + 
√

7𝑖: 𝐴 − 𝜆𝐼 = Can take v =4 1 − 
√

7𝑖]. 

[1 + 
−2√

7𝑖]. 

A complex solution 

z(𝑡) = 𝑒(2+
√

7𝑖)𝑡 [ 
−2 

1 + 
√

7𝑖] 

= 𝑒2𝑡(cos(
√

7𝑡) + 𝑖 sin(
√

7𝑡)) [ 
−2 

1 + 𝑖
√

7] 

−2 cos(
√

7𝑡) − 2𝑖 sin(
√

7𝑡)= 𝑒2𝑡 [cos(
√

7𝑡) − 
√

7 sin(
√

7𝑡) + 𝑖(sin(
√

7𝑡) + 
√

7 cos(
√

7𝑡))] 

Both the real and imaginary parts of z are solutions to the system: 

−2 cos(
√

7𝑡)x1(𝑡) = Re(z) = 𝑒2𝑡 [cos(
√

7𝑡) − 
√

7 sin(
√

7𝑡)] 

−2 sin(
√

7𝑡)x2(𝑡) = Im(z) = 𝑒2𝑡 [sin(
√

7𝑡) + 
√

7 cos(
√

7𝑡)] 

General solution: (𝑥)(𝑡) = 𝑐1x1(𝑡) + 𝑐2x2(𝑡). 

Problem 11. Given the following two-tank mixing system with flow rates, inputs and 
volumes as shown. (All unit are compatible; 𝑓1(𝑡) and 𝑓2(𝑡) denote salt rates in mass 

time .) 
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𝑓1(𝑡) (pure salt) 𝑓2(𝑡) (pure salt) 

1 4 

2 3 

3 2
𝑉1 = 2 𝑉2 = 3 

(a) Let 𝑥 and 𝑦 be the amount of salt in tanks 1 and 2 respectively. Set up a system of DEs 
modeling 𝑥, 𝑦. 
Solution: The tank is balanced (the volumes don’t change) so, 

𝑦 𝑥 𝑥′ = rate in − rate out = (𝑓1(𝑡) + 3 ⋅ ) − (4 ⋅ ) = −2𝑥 + 𝑦 + 𝑓1𝑉2 𝑉1
𝑥 𝑦 𝑦′ = rate in − rate out = (𝑓2(𝑡) + 2 ⋅ ) − (6 ⋅ ) = 𝑥 − 2𝑦 + 𝑓2𝑉1 𝑉2 

(b) Suppose the input salt rates 𝑓1(𝑡) and 𝑓2(𝑡) are constant. Show that the system ap-
proaches a state in which the final concentrations are constant. 

Solution: Our system is x ′ = 𝐴x + f, where 𝐴 = [−2 1 and f = [𝑓1].1 −2] 𝑓2 

Characteristic equation: 𝑃(𝜆) = 𝜆2 + 4𝜆 + 3 = 0. 
Eigenvalues: 𝜆1 = −1 and 𝜆2 = −3. 

Eigenvectors: For 𝜆1 ∶ v1 = [1
1] . For 𝜆2 ∶ v2 = [−1

1 ] . 

General homogeneous solution: xh(𝑡) = 𝑐1𝑒−𝑡v1 + 𝑐2𝑒−3𝑡v2. 
If f = (𝑓1, 𝑓2)𝑇 = constant then by guessing xp = constant and plugging into x ′ = 𝐴x + f 
we get 0 = 𝐴xp + f ⇒ xp = −𝐴−1f. That is, 

1 1 
3
1 [2𝑓1 + 𝑓2xp(𝑡) = 3 

[2
1 2] [𝑓

𝑓
1
2
] = 𝑓1 + 2𝑓2

] . 

The homogeneous solution xh(t) decays to 0 as 𝑡 → ∞. Therefore, every solution goes 
asymtotically to the constant solution xp as 𝑡 gets large. This shows that the amount of 
salt in each tank becomes asymtotically constant. Since the volumes of fluid in each tank 
stays constant the concentrations must also become asymtotically constant. 

For more problems on linear and nonlinear systems see Practice Quiz 7, Prob-
lems 8-11. 

End practice final solutions 
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