
ES.1803 Practice 2 Final Quiz, Spring 2024 Solutions 

This practice contains no linear algebra problems. 
Problem 1. 𝑑𝑦 (a) Find all solutions to the DE .𝑑𝑥 

= 𝑦2 

Solution: We separate variables and also add any lost solutions. 

Separable: 𝑑𝑦 = 𝑑𝑥 ⇒ − 
1 = 𝑥 + 𝐶 𝑦2 𝑦 

1⇒ 𝑦 = − Plus one lost solution: 𝑦 = 0.𝑥 + 𝐶 
. 

(b) Give a definite integral solution to the following IVP 

𝑦′ + 4 𝑦 = cos(𝑡2 + 𝑡3); 𝑦(0) = 2. 

You do not have to evaluate the integral. 
Solution: Linear first-order DE, unusual input: use the variation of parameters formula. 
𝑦ℎ(𝑡) = 𝑒−4𝑡. 

𝑡 

𝑒−4𝑡 (∫𝑦(𝑡) = 𝑦ℎ(𝑡) (∫
𝑡
𝑓(𝑢)/𝑦ℎ(𝑢) 𝑑𝑢 + 𝑦0/𝑦ℎ(0)) = 𝑒4𝑢 cos(𝑢2 + 𝑢3) 𝑑𝑢 + 2) . 

0 0 

Problem 2. 
(a) Give the general real solution to ̈ ̇𝑥 + 3𝑥 + 4𝑥 = 𝑒2𝑡 + 𝑡 + 3. 
Solution: Homogeneous equation: ̈ ̇𝑥 + 3𝑥 + 4𝑥 = 0. 

−3 ± 
√

9 − 16 −3 ± 
√

7 𝑖 Characteristic equation: 𝑟2 + 3𝑟 + 4 = 0 ⇒ 𝑟 = = . 

⇒ 𝑥ℎ(𝑡) = 𝑐1𝑒−3𝑡/2 cos(
√

7 𝑡/2) + 𝑐2𝑒−3𝑡/2 sin(
√

7/2 𝑡). 
2 2 

Particular pieces: 
𝑒2𝑡 𝑒2𝑡 

𝑥1̈ + 3𝑥1̇ + 4𝑥1 = 𝑒2𝑡: ERF ⇒ 𝑥1(𝑡) = 𝑃(2) 
= 14 . 

𝑥2̈ + 3𝑥2̇ + 4𝑥2 = 𝑡 + 3: Try 𝑥2 = 𝐴𝑡 + 𝐵 

Substitution ⇒ 3(𝐴) + 4(𝐴𝑡 + 𝐵) = 𝑡 + 3 ⇒ 4𝐴𝑡 + 3𝐴 + 4𝐵 = 𝑡 + 3 

𝑡 ⇒ 𝐴 = 1/4, 𝐵 = 9/16 ⇒ 𝑥2(𝑡) = 4 + 
9 
16. 

𝑒2𝑡 

16 
+ 𝑐1𝑒−3𝑡/2 cos (

√

2
7 𝑡 ) + 𝑐2𝑒−3𝑡/2 sin (

√
7 𝑡 𝑥(𝑡) = 𝑥1(𝑡) + 𝑥2(𝑡) + 𝑥ℎ(𝑡) = 14 

+ 4
𝑡 + 

9 
2 

) . 

(b) If the differential operator in Part (a) models a physical system is the system stable? 
Eplain how you know. 
Solution: Yes, the system is stable because the characteristic roots have negative real 
part. 

1 
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(c) What is the amplitude response for the system ̈ ̇𝑥 + 3𝑥 + 4𝑥 = cos(𝜔𝑡), where cos(𝜔𝑡) 
is the input? 

cos(𝜔𝑡 − 𝜙) Solution: The SRF gives the periodic solution: 𝑥𝑝(𝑡) = . Since cos(𝜔𝑡) is the |𝑃 (𝑖𝜔)| 
1input, the gain is 𝑔(𝜔) = |𝑃 (𝑖𝜔)| . 

1Computing: 𝑃(𝑖𝜔) = 4 − 𝜔2 + 3𝑖𝜔 ⇒ 𝑔(𝜔) = √(4 − 𝜔2)2 + 9𝜔2 
. 

(d) For what values of 𝑘 does ̈ ̇ have oscillatory solutions? 𝑥 + 3𝑥 + 𝑘𝑥 = 0 

−3 ± 
√

9 − 4𝑘 Solution: Characteristic roots are .2 

Oscillatory ⇔ complex roots ⇔ 9 − 4𝑘 < 0 ⇔ 𝑘 > 9/4. 

Problem 3. Let 𝑃 (𝐷) be a constant coefficient differential operator. 
∞ 

Suppose that the DE 𝑃 (𝐷)𝑥 = 𝑓 with 𝑓(𝑡) = ∑ 𝑛
1
2 

sin(𝑛𝑡) has the periodic solution 
𝑛=1 

∞
𝑥𝑝(𝑡) = ∑ |5 − 𝑛 

1
2|(𝑛2) 

sin(𝑛𝑡 − 𝜙(𝑛)), where 𝜙(𝑛) = {0 for 𝑛 < 
√

5 

𝜋 for 𝑛 > 
√

5 
. 

𝑛=1 

(a) Without finding 𝑃 (𝐷) write down the periodic solution to the DE 𝑃 (𝐷)𝑥 = sin(3𝑡). 
Solution: The solution 𝑥𝑝(𝑡) was found by superposition, so, stripping out the coefficients 

sin(3𝑡 − 𝜋) from the input, we see the solution to 𝑃 (𝐷)𝑥 = sin(3𝑡) is 𝑥(𝑡) = = −1
4 

sin(3𝑡).|5 − 9| 
(b) Find 𝑃 (𝐷). 
Solution: Again, since 𝑥𝑝(𝑡) is found by superposition we see |𝑃 (𝑖𝑛)| = |5 − 𝑛2| and 
Arg(𝑃 (𝑖𝑛)) = 𝜙(𝑛). So, 𝑃(𝐷) = 𝐷2 + 5𝐼 . 

Problem 4. Solve 𝑥″ + 5𝑥 = 5 cos(𝜔𝑡). (Be sure to do this for every value of 𝜔.)
5 cos(𝜔𝑡 − 𝜙) Solution: Use the SRF: 𝑥𝑝(𝑡) = (as long as 𝑃 (𝑖𝜔) ≠ 0).|𝑃 (𝑖𝜔)| 

if 𝜔 < 
√

5𝑃 (𝑖𝜔) = 5 − 𝜔2; |𝑃 (𝑖𝜔)| = |5 − 𝜔2|; 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)) = {0 

𝜋 if 𝜔 > 
√

5 

(We ignore 𝜔 = 
√

5 because then 𝑃 (𝑖𝜔) = 0 and we need to use the Extended SRF.) So, 
5 cos(𝜔𝑡 − 𝜙(𝜔)) for 𝜔 ≠ 

√
5, we have 𝑥𝑝(𝑡) = .|5 − 𝜔2|

5𝑡 cos(𝜔𝑡 − 𝜙) If 𝜔 = 
√

5 we need the ESRF: 𝑥𝑝(𝑡) = , where 𝜙 = Arg(𝑃 ′(𝑖𝜔)).|𝑃 ′(𝑖𝜔)| 

𝑃 ′(𝑖𝜔) = 2𝑖𝜔; |𝑃 ′(𝑖
√

5)| = 2
√

5; 𝜙 = Arg(𝑃 ′(𝑖
√

5)) = 𝜋/2. 
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The full solution for the particular solution to the DE is 

⎧5 cos(𝜔𝑡) if 𝜔 < 
√

55 − 𝜔2
{5 cos(𝜔𝑡 − 𝜋) −5 cos(𝜔𝑡)

𝑥𝑝(𝑡) = = if 𝜔 > 
√

5⎨ |5 − 𝜔2| |5 − 𝜔2|
5𝑡 cos(

√
5 𝑡 − 𝜋/2) 5𝑡 sin(𝜔𝑡){ = if 𝜔 = 

√
5.⎩ 2

√
5 2

√
5 

Problem 5. 
Solve (𝐷3 + 𝐼)𝑦 = 0. 

= −1 = 𝑒𝑖(𝜋+2𝑛𝜋)Solution: Characteristic equation 𝑟3 + 1 = 0. So, 𝑟3 . Thus, 

𝑟 = 𝑒𝑖(𝜋/3+2𝑛𝜋/3) = 𝑒𝑖𝜋/3, 𝑒𝑖3𝜋/3, 𝑒𝑖5𝜋/3 = 
1
2 

+ 

√

2
3 𝑖, −1, 1

2 
− 

√

2
3 𝑖. 

√
3𝑡 

√
3𝑡 So, 𝑦(𝑡) = 𝑐1𝑒𝑡/2 cos ( 2 

) + 𝑐2𝑒𝑡/2 sin ( 2 
) + 𝑐3𝑒−𝑡. 

Problem 6. 
Consider the following pole diagrams for 5 linear time invariant systems of the form
𝑃 (𝐷)𝑦 = 𝑓. (The diagrams are in the complex 𝑠-plane, where we consider the charac-
teristic polynomial 𝑃 (𝑠) to be a function of 𝑠.) 

(a) 

Re 

Im 

x x
−3 

−3 

3 

3 

−1 1 

(b) 

Re 

Im 

xx
1 3 

−3 

3 

−2 

(c) 

Re 

Im 

x 

x 

x 
−1 1 3−3 

−3 

3 
(d) 

Re 

Im 

x 

x 

x 

−3 1 3−1 

−3 

3 
(e) 

Re 

Im 

x 

x 

x 
1 3−1−3 

−3 

3 

(a) List all the stable systems. 

Solution: Systems are stable if all poles are in the left half-plane: b, c, d, e 

(b) Choose the stable system where the transient has the fastest decay. 
Solution: The decay rate is determined by the right-most pole. 
So we want the system with the right-most pole farthest to the left (i.e., the left-most 

right-most pole). ⇒ choose system (c). 

(c) Choose the stable system where the transient decays as fast as possible without oscillation. 

Solution: We only consider systems with all real poles. Among these we want the one 
with the right-most pole farthest to the left ⇒ choose system (b). 

(d) Below is the pole diagram for a linear time invariant system with cosine input: 𝑃 (𝐷)𝑥 = 
𝐹0 cos(𝜔𝑡). In this particular system 𝜔 must be an integer between 1 and 5 and it is critical 
that the response be kept as small as possible. 
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What frequency 𝜔 would you use? Mark the pole diagram with a solid dot in the appropriate 
place to indicate this frequency. 

𝐼𝑚 
x 5 

x 3 

−5 −3 

x 

−1 
x 

1 

1
−1 

3 
𝑅𝑒 

5 

x −3 

x −5 

Solution: The amplitude of the response to cos(𝜔𝑡) is given by 1/|𝑃 (𝑖𝜔)|. Since the poles 
are where 1/|𝑃 (𝑠)| goes to infinity, we want 𝑖𝜔 to be as far as possible from the nearest pole. 
That is, we want 𝜔 to be 3. It should be marked on the imaginary axis in the diagram. 

𝑅𝑒 

𝐼𝑚 

−5 

−5 

−3 

−3 

−1 −11 

1 

5 

5x 

x 

x 

x 

x 

x 

3𝑖 = 𝜔𝑖 

Problem 7. 
For a linear, time invariant system, if the input is 𝑒𝑠𝑡, then the output is 𝐺(𝑠)𝑒𝑠𝑡. The gain 
factor 𝐺(𝑠) is called the complex gain of the system. 

𝑠 Suppose such a system has complex gain 𝐺(𝑠) = (𝑠2 + 9)(𝑠 + 7)(𝑠 + 1) . 

(a) For what value of 𝜔 > 0 will the input cos(𝜔𝑡) give the biggest response. 
Solution: Since the response to 𝑒𝑖𝜔𝑡 is 𝐺(𝑖𝜔)𝑒𝑖𝜔𝑡, the amplitude of the response to cos(𝜔𝑡) 
is 

𝑖𝜔 𝜔 |𝐺(𝑖𝜔)| = ∣ ∣ = ∣ ∣ .((𝑖𝜔)2 + 9)(𝑖𝜔 + 7)(𝑖𝜔 + 1) (9 − 𝜔2)(𝑖𝜔 + 7)(𝑖𝜔 + 1) 

Since the denominator is 0 when 𝜔 = 3 the maximum amplitude is ∞ when 𝜔 = 3 . (That 
is, there is pure resonance at 𝜔 = 3.) 

(b) The system with input 𝑓 satisfies the DE 𝑃 (𝐷)𝑦 = 𝑓′ . What is 𝑃 (𝐷)? 
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Solution: Letting 𝑓 = 𝑒𝑠𝑡 the equation becomes 𝑃 (𝐷)𝑦 = 𝑠𝑒𝑠𝑡. 
𝑠𝑒𝑠𝑡 

𝑠 The ERF gives 𝑦𝑝(𝑡) = That is, 𝐺(𝑠) = 𝑃 (𝑠) . Thus, 𝑃 (𝑠) = (𝑠2 + 9)(𝑠 + 7)(𝑠 + 1).𝑃 (𝑠) . 

So, 𝑃 (𝐷) = (𝐷2 + 9)(𝐷 + 7)(𝐷 + 1) . 

Problem 8. 
The DE for this problem is 𝑦′ = 𝑦2 − 𝑥2. The direction field for this DE is shown. We also 
show the isocline with slope 𝑚 = −4. 

y' = y^2 − x^2

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

x

y

m=−4m=−4

(a) Sketch the nullcline (isocline with slope 𝑚 = 0). Clearly label your answer. 
Solution: See picture below. 
(b) Sketch in the solution curve with 𝑦(1) = 1. 
Solution: See picture at below. 

y' = y^2 − x^2

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

x

y

m=−4m=−4

m=4

m=4

m=0

m=0

●

(c) Suppose you used Euler’s method to estimate 𝑦(1.2) for your solution in Part (b). Is 



{

{
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the estimate too high or too low? Give a reason for your answer. 
Solution: We’ll use the second derivative to understand the convexity of 𝑦. 
𝑦′ = 𝑦2 − 𝑥2 ⇒ 𝑦″ = 2𝑦 𝑦′ − 2𝑥. 
Thus, 𝑦(1) = 1 ⇒ 𝑦′(1) = 0 ⇒ 𝑦″(1) = −2 

𝑦″(1) < 0 ⇒ concave down (also see plot above). 
Concave down, so approximation is probably an overestimate. 
(d) Estimate 𝑦(100), where 𝑦 is the solution in Part (b). 
Give a reason for your answer. 
Solution: 𝑦(100) ≈ −100, because the integral curve is squeezed between the isoclines with
𝑚 = 0 and 𝑚 = −4, since on both isoclines the ’hairs’ point towards the curve. 

Problem 9. 
The DE in this problem is 𝑦′ = 𝑎𝑦 − 𝑦3. 
(a) First take 𝑎 = 1, and find and classify the critical points, give a phase line diagram and 
a sketch of some representative solutions. 
Solution: Critical points: 𝑦′ = 𝑦 − 𝑦3 = 𝑦(1 − 𝑦2) = 0 ⇒ 𝑦 = 0, 1, −1. 
To draw a phase line, we check the sign of 𝑦′ : 

⎧negative for 𝑥 > 1 
{positive for 0 < 𝑥 < 1𝑦′ = 𝑦(1 − 𝑦2) is ⎨negative for −1 < 𝑥 < 0
{⎩positive for 𝑥 < −1 

y

•stable 1

•stable -1

•unstable 0 t

y

(b) Now letting the parameter 𝑎 vary: draw the bifurcation diagram. Be sure to include the 
followin 

(i) Label the axes. 
(ii) On the diagram add phase lines at 𝑎 = −1, 0, 1 

(Hint: reuse your answer to Part (a).) 

Solution: The critical points are 𝑦′ = 𝑎𝑦 − 𝑦3 = 0. Factoring: 𝑦(𝑎 − 𝑦2) = 0, so either
𝑦 = 0 or 𝑎 = 𝑦2. We plot both these curves on the bifurcation diagram. 
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In the plot below on the left, we added phase lines for 𝑎 = −1, 0, 1. The phase line for 
𝑎 = 1 is sufficient to tell us the sign of 𝑦′ for all values of 𝑎 and 𝑦. This allows us to label 
the stability of the critical points in the right-hand diagram below. 

a

y

−1 1

−1

1

a

y

−1 1

−1

1
stable

stable

stable unstable

Bifurcation diagram with phase lines Bifurcation diagram 

(c) (i) What does the plot represent? 

(ii) If this is a population model for what values of 𝑎 is the population sustainable? 

Solution: (i) The bifurcation diagram shows the critical points for each choice of the 
parameter 𝑎. It includes information about the stability of the critical points. 
(ii) For 𝑎 > 0, there are positive stable equilibra. So it is sustainable with these values of 𝑎. 
For 𝑎 ≤ 0, there are no positive stable equilibra. So the population is unsustainable for 
these values of 𝑎. 

Problem 10. 
Solve ̈𝑥 − 𝑥 = 𝛿(𝑡 − 2) + 𝑢(𝑡 − 4) with rest IC using. (𝑢(𝑡) is the unit step function.) 

Solution: We use superposition to solve the problem in two pieces. Note: we make use of 
the fact that the superposition of two solutions each satisfying rest IC also satisfies the rest 
IC. 
The homogeneous equation ̈ .𝑥 − 𝑥 = 0 has solution 𝑐1𝑒𝑡 + 𝑐2𝑒−𝑡 

First, solve 𝑥1̈ − 𝑥1 = 𝛿(𝑡 − 2) with rest IC. The input 𝛿(𝑡 − 2) causes a jump in 𝑥1̇ at 𝑡 = 2. 
So, we break the solution into cases. 
For 𝑡 < 2: DE: 𝑥1̈ − 𝑥1 = 0, IC: 𝑥1(0) = 0, 𝑥1̇ (0) = 0. 
This has solution 𝑥1(𝑡) = 0, for 𝑡 < 0. 
For the next case, we note 𝑥1(2−) = 0, 𝑥1̇ (2−) = 0. 

For 𝑡 > 2: the DE and post-initial conditions are 

𝑥1̈ − 𝑥1 = 0; 𝑥1(2+) = 0, 𝑥1̇ (2+) = 𝑥1̇ (2−) + 1. 
Because of time invariance, we can write the homogeneous solution as 𝑥1(𝑡) = 𝑐1𝑒𝑡−2 +
𝑐2𝑒−(𝑡−2). (The shift by 2 is not necessary it just makes the computation a little easier.) 
Using the post-IC at 2+ we get 𝑐1 = 1/2, 𝑐2 = −1/2. 
The full solution for 𝑥1 is 

for 𝑡 < 2 𝑥1(𝑡) = {0
1
2𝑒𝑡−2 − 2

1𝑒−(𝑡−2) for 𝑡 > 2. 
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Second, solve 𝑥2̈ − 𝑥2 = 𝑢(𝑡 − 4) with rest IC. 
For 𝑡 < 4: DE: 𝑥2̈ − 𝑥2 = 0, IC: 𝑥2(0) = 0, 𝑥2̇ (0) = 0 

This has solution 𝑥2(𝑡) = 0 for 𝑡 < 4. 
For 𝑡 > 4: The DE and IC are 

𝑥2̈ − 𝑥2 = 1; 𝑥2(4) = 𝑥2̇ (4) = 0. 

We easily find the solution 𝑥2 = −1 + 𝑐1𝑒𝑡−4 + 𝑐2𝑒−(𝑡−4). And, using the IC at 𝑡 = 4, we get
𝑐1 = 𝑐2 = 1/2. So, 

for 𝑡 < 4 𝑥2(𝑡) = {0 

−1 + 1
2𝑒𝑡−4 + 1

2𝑒−(𝑡−4) for 𝑡 > 4. 

Full solution to problem: 

⎧0 for 𝑡 < 2 {
𝑥(𝑡) = 𝑥1 + 𝑥2 = 2

1𝑒𝑡−2 − 1
2𝑒−(𝑡−2) for 2 < 𝑡 < 4 ⎨{

2
1𝑒𝑡−2 − 1

2𝑒−(𝑡−2) − 1 + 2
1𝑒𝑡−4 + 1

2𝑒−(𝑡−4)⎩ for 4 < 𝑡 

Problem 11. 
(a) The function 𝑓(𝑡) is periodic with period 2. On the interval −1 ≤ 𝑡 < 1 we have
𝑓(𝑡) = 𝑡. Find the Fourier series for 𝑓(𝑡). 
Solution: We have 𝐿 = 1 and 𝑓(𝑡) is odd ⇒ 𝑓(𝑡) = ∑ 𝑏𝑛 sin(𝑛𝜋𝑡), where 

𝑏𝑛 = 2 ∫
1

𝑓(𝑡) sin(𝑛𝜋𝑡) 𝑑𝑡 
0 

1 1 

+ 
sin(𝑛𝜋𝑡) = 2 ∫ 𝑡 sin(𝑛𝜋𝑡) 𝑑𝑡 = 2 [− 

𝑡 cos(𝑛𝜋𝑡)
𝑛𝜋 (𝑛𝜋𝑡)2 

]
0 0 

= (−1)(𝑛+1) 2 
𝑛𝜋 

. 

∞2 (−1)(𝑛+1) sin(𝑛𝜋𝑡) ⇒ 𝑓(𝑡) = ∑ .𝜋 𝑛 𝑛=1 

(b) Find a periodic solution to 𝑥″ + 36𝑥 = 𝑓(𝑡). 
Solution: We will use superposition, so first we solve individual equations: 

𝑥″
𝑛 + 36𝑥𝑛 = sin(𝑛𝜋𝑡). 

if 𝑛 = 1We have 𝑃(𝑖𝑛𝜋) = 36−𝑛2𝜋2. So, |𝑃 (𝑖𝑛𝜋)| = |36−𝑛2𝜋2|, 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛𝜋)) = {0 

𝜋 if 𝑛 > 1 
. 

sin(𝑛𝜋𝑡 − 𝜙(𝑛)) Thus, by the SRF, 𝑥𝑛,𝑝(𝑡) = .|36 − 𝑛2𝜋2| 
∞2 (−1)(𝑛+1) sin(𝑛𝜋𝑡 − 𝜙(𝑛)) Now by superposition: 𝑥𝑝(𝑡) = ∑ .𝜋 𝑛=1 

𝑛|36 − 𝑛2𝜋2| 
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(c) Which frequency in the Fourier series for 𝑓(𝑡) is closest to resonance for the system in 
Part (b). 
Solution: The natural frequency is 

√
36 = 6. The frequency of the 𝑛th term is 𝑛𝜋 ⇒ the 

term with 𝑛 = 2 is closest to resonance 

Problem 12. 
Match each of the following Fourier series with a graph below. For credit you must give a 
short explanation of your choice. 

∞ ∞ 

(a) 4 ∑ 𝑛
1
2 

cos(𝑛𝑡) + 4 ∑ 𝑛
1
2 

sin(𝑛𝑡)
𝑛=1 𝑛=1 

Solution: Neither even nor odd function ⇒ Graph II. 
∞ 

(b) ∑ 𝜋 𝑛 
3 

2 
cos(𝑛𝜋𝑡) 

𝑛=1 

Solution: Even function, period 2 ⇒ Graph V. 

4 sin(𝑛𝑡)(c) .𝜋 ∑ 𝑛 𝑛 𝑜𝑑𝑑 

Solution: Odd period 2𝜋 square wave has known Fourier series ⇒ Graph I. 
∞ 

(d) ∑ 𝜋 𝑛 
3 

2 
cos(𝑛𝑡)

𝑛=1 

Solution: Even function, period 2𝜋 ⇒ Graph IV. 
∞ 

(e) ∑ 𝜋 𝑛 
3 

3 
sin(𝑛𝑡)

𝑛=1 

Solution: Odd function, not the square wave ⇒ Graph III. 

● ● ● ● ● ● ●

−− 3ππ −− 2ππ −− ππ ππ 2ππ 3ππ

1

−1

Graph I 

− 2π − π π 2π

Graph II 

−− 2ππ −− ππ ππ 2ππ

Graph III 

−− 2ππ −− ππ ππ 2ππ

1

Graph IV 

−6 −3 1 3 5

1

Graph V 
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Problem 13. 
Consider the following partial differential equation with boundary and initial conditions: 
PDE: 𝑢𝑡(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡); defined for 0 < 𝑥 < 1. 
BC: 𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0. 
IC: 𝑢(𝑥, 0) = 𝑓(𝑥). 
(a) The separation of variables technique looks for solutions to the PDE of the form 𝑢(𝑥, 𝑡) = 
𝑋(𝑥)𝑇 (𝑡). Give the ordinary DEs satisfied by 𝑋 and 𝑇 . 
You do not have to solve these DEs. 
Solution: Separated solution: 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 

= 𝑋″𝑇 ⇒ 
𝑇 ′ + 𝑇 𝑋″ 

Substitution: 𝑋𝑇 ′ + 𝑋𝑇 = = −𝜆 for some constant 𝜆.𝑇 𝑋 
(We must have a constant because we have a function of 𝑡 = a function of 𝑥.) 

⇒ 𝑋″ + 𝜆𝑋 = 0 and 𝑇 ′ + (1 + 𝜆)𝑇 = 0. 

(b) To make your life easier, we’ll tell you that, in the usual notation, the only separated 
solutions satisfying the boundary conditions have 𝜆 > 0 and are of the form 

𝑋(𝑥) = 𝑎 cos(
√

𝜆 𝑥) + 𝑏 sin(
√

𝜆 𝑥) and 𝑇 (𝑡) = 𝑒−(1+𝜆)𝑡. 

Of course, not all 𝜆 > 0 work. Find all the separated solutions to the PDE that satisfy the 
boundary conditions. Then give the general solution to the PDE with BC. 
Solution: For separated solutions the BC are 𝑋(0) = 0, 𝑋(1) = 0. 
BC: 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 cos(

√
𝜆) + 𝑏 sin(

√
𝜆) = 0. 

With 𝑎 = 0, the second equation becomes 𝑏 sin(
√

𝜆) = 0. If 𝑏 = 0, we have a trivial solution. 
So, the nontrivial solutions have sin(

√
𝜆) = 0, ⇒ 

√
𝜆 = 𝑛𝜋 for some positive integer 𝑛. 

Modal solutions: 𝑢𝑛(𝑥, 𝑡) = 𝑏𝑛 sin(𝑛𝜋𝑥) 𝑒−(1+𝑛2𝜋2)𝑡 for 𝑛 = 1, 2, 3, … . 

∞ ∞ 

General solution by superposition: 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = ∑ 𝑏𝑛 sin(𝑛𝜋𝑥)𝑒−(1+𝑛2𝜋2)𝑡 . 
𝑛=1 𝑛=1 

(c) Give the Fourier solution to PDE with BC and IC. Be sure to write down the integral 
formula for any coefficients used. (Since 𝑓 is not specified you cannot compute the integrals.) 

Solution: IC: 𝑢(𝑥, 0) = ∑ 𝑏𝑛 sin(𝑛𝜋𝑥) = 𝑓(𝑥). So, 𝑏𝑛 = Fourier sine coefficient of 𝑓 : 

2𝑏𝑛 = 
1 

𝑓(𝑥) sin(𝑛𝜋𝑥) 𝑑𝑥. 1 
∫

0 

(d) We can add input to the PDE: 𝑢𝑥𝑥 = 𝑢𝑡 + 𝑢 + 𝑥𝑒−𝑡. 
A particular solution to this PDE also satisfying the BC of Part (a) is: 𝑢𝑝(𝑥, 𝑡) = 

(𝑥
6
3 

− 
𝑥 
6 

) 𝑒−𝑡. 

What are all the solutions to this PDE which also satisfy the BC? 
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Solution: Using linearity, the general solution is the particular solution + the general ho-
∞ 

6 
− 𝑥 mogeneous solution found in Part (c): 𝑢(𝑥, 𝑡) = (𝑥3 

6 ) 𝑒−𝑡 + ∑ 𝑏𝑛 sin(𝑛𝜋𝑥)𝑒−(1+𝑛2𝜋2)𝑡. 
𝑛=1 

Note well: When using superposition, you need to make sure that it applies to both the 
PDE and the BC. 

Problem 14.
5Let 𝐴 = [6 
2]. We know the eigenvalues and eigenvectors of 𝐴 are 1 

𝜆1 = 1, v1 = [ 
1 and 𝜆2 = 7, v2 = [5

1] . −1] 

5Solve the initial value problem: x ′ = [6 
2] x; x(0) = [7

3].1 

Solution: Using the eigenstuff, the general solution for the system is 

x(𝑡) = 𝑐1𝑒𝑡 [−1
1 ] + 𝑐2𝑒7𝑡 [5

1] . 

5The initial conditions give, x(0) = 𝑐1 [−1
1 ] + 𝑐2 [

5
1] = [3

7] ⇒ [−1
1 

1] [𝑐
𝑐

1
2
] = [7

3] . 

Solving this using your favorite method, you should find [𝑐1] = 7
1 [−32 Therefore,𝑐2 10 ]. 

x(𝑡) = −32
7 𝑒𝑡 [−1

1 ] + 
10
7 𝑒7𝑡 [1

5] . 

Problem 15. 
For the DE system 𝑥′ = −𝑥 − 𝑦 + 𝑥𝑦, 𝑦′ = 2𝑥 − 𝑥𝑦 

(a) Show that (0,0) and (2, 2) are its only critical points. 
Solution: Critical points must satisfy 𝑥′ = −𝑥 − 𝑦 + 𝑥𝑦 = 0 and 𝑦′ = 2𝑥 − 𝑥𝑦 = 0. 
Factoring the second equation: 𝑦′ = 𝑥(2 − 𝑦) = 0. So 𝑥 = 0 or 𝑦 = 2. 
Using this in the first equation: 𝑥 = 0 ⇒ 𝑦 = 0 and 𝑦 = 2 ⇒ 𝑥 = 2. 
Thus (0, 0) and (2, 2) are the only critical points. 
(b) Compute the linearized system at each of the critical points and solve for the eigenvalues. 
Solve for the eigenvectors only if they will be needed in order to get a good sketch of the 
trajectories in Part (d). 

−1 + 𝑥 Solution: Jacobian 𝐽(𝑥, 𝑦) = [−1 + 𝑦
2 − 𝑦 −𝑥 

]. 

At (0, 0): 𝐽(0, 0) = [−1
2 

−1
0 

]. 

Characteristic equation: 𝜆2 + 𝜆 + 2 = 0 ⇒ 𝜆 = −1±
√

1−8 .2 
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This is a linearized spiral sink (counterclockwise). 

At (2, 2): 𝐽(2, 2) = [1 1
0 −2]. 

Triangular, so eigenvalues are the diagonal entries: 𝜆 = 1, −2. 
This is a linearized saddle. We’ll need eigenstuff in Part (d). 
Basic eigenvectors. 

𝜆 = 1: 𝐴 − 𝜆𝐼 = [0
0 −3

1 ]. Basic eigenvector [1
0]. 

𝜆 = −2: 𝐴 − 𝜆𝐼 = [3 
0]. Basic eigenvector [ 1

0 
1 

−3]. 

(c) Will the behavior of the trajectories of non-linear system near the critical points be 
essentially the same as that of the linearized system in each case? What property of the 
linearized system at the critical point allows you to be able to tell in each case? 

Solution: Yes, both linearized critical points are structurally stable. 
(d) Using all the information about the linearized system at the critical points found in 
Parts (b) and (c), sketch in (on the x-y plot below) some trajectories in the neighborhood 
of each critical point. Then use this to create a conjectural phase portrait of the non-linear 
system. 
Solution: See figure. 

Problem 16. 
A model for the spread of a disease, which travels between two species 𝑆1 and 𝑆2, is given 
by 

𝑥′ = −2𝑥 + 𝑎(1 − 𝑥)𝑦, 𝑦′ = −𝑦 + 𝑎(1 − 𝑦)𝑥 with 𝑎 > 0. 
Here 𝑥(𝑡) represents the fraction of the 𝑆1 population which is carrying the disease and 𝑦(𝑡) 
is the corresponding fraction of the population 𝑆2. The expressions (1 − 𝑥)𝑦 and (1 − 𝑦)𝑥 
measure encounters between the infected and uninfected portions of the two populations, 
and the parameter 𝑎 measures the transmission rate. Note that the disease would die out 
exponentially in each population were it not for infection from the other (i.e., if 𝑎 = 0 it 
dies out). 
(a) For 𝑎 = 1, the only critical point with physical significance for this model is (0,0). Find 
the type of this critical point in the linearized approximation to this system. 



13 ES.1803 Practice 2 Final Quiz, Spring 2024 Solutions 

Solution: For 𝑎 = 1 we have 𝑥′ = −2𝑥 + 𝑦 − 𝑥𝑦 and 𝑦′ = −𝑦 + 𝑥 − 𝑥𝑦. 
1 − 𝑥 1𝐽(𝑥, 𝑦) = [−2 − 𝑦 

−1 − 𝑥] ⇒ 𝐽(0, 0) = [−2
1 − 𝑦 1 −1]. 

−3 ± 
√

5Characteristic equation: 𝜆2 + 3𝜆 + 1 = 0 ⇒ 𝜆 = ⇒ linearized nodal sink. 2
1(b) For 𝑎 = 2, (0,0) and (1 
3) are the only critical points. Again, find their types in the 4, 

linearized approximation to this system. 
Solution: For 𝑎 = 2 we have 𝑥′ = −2𝑥 + 2𝑦 − 2𝑥𝑦 and 𝑦′ = −𝑦 + 2𝑥 − 2𝑥𝑦. 

2 − 2𝑥 𝐽(𝑥, 𝑦) = [−2 − 2𝑦
2 − 2𝑦 −1 − 2𝑥]. 

At (0, 0): 𝐽(0, 0) = [−2 2
2 −1]. 

Characteristic equation: 𝜆2 + 3𝜆 − 2 = 0. Because the determinant is negative, we know 
this is a linearized saddle . 

At (1/4, 1/3): 𝐽(1/4, 1/3) = [−8/3 3/2
4/3 −3/2] 

Characteristic equation: 𝜆2 + 25
6 𝜆 + 2 = 0. Roots are real and negative, so this is a 

linearized nodal sink. 
(c) What long-range outcome does this analysis predict for the long-term levels of the disease 
in the populations, for the transmission rates 𝑎 = 1 and 𝑎 = 2. What is the effect of the 
increased communicablility of the disease? 

Solution: Since all the linearized critical points are structurally stable, the critical points 
in the nonlinear system are each of the same type as their linearized versions. 
For 𝑎 = 1: the lone critical point at the origin is asymptotically stable, so we expect all 
trajectories to go to (0, 0), i.e., in the long-term the disease disappears. 
For 𝑎 = 2: the only stable critical point is the sink at (1/4, 1/3), so we expect that in the 
long-term the disease will be endemic with 1/4 of 𝑆1 and 1/3 of 𝑆2 sick at any one time. 
The increased communicablility allows the disease to stay in the population instead of dying 
out. 

End practice final 2 solutions 
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