
ES.1803 Practice Solutions – Quiz 6, Spring 2024 

Integrals (for 𝑛 a positive integer) 

−𝑡 cos(𝜔𝑡) + 
sin(𝜔𝑡) 𝜋(−1)𝑛+1 

1. ∫ 𝑡 sin(𝜔𝑡) 𝑑𝑡 = . 1′ . ∫
𝜋 

𝑡 sin(𝑛𝑡) 𝑑𝑡 = .𝜔 𝜔2 
0 𝑛 
𝜋 ⎧−2𝑡 sin(𝜔𝑡) + 

cos(𝜔𝑡) { for 𝑛 odd 
2. ∫ 𝑡 cos(𝜔𝑡) 𝑑𝑡 = . 2′ .∫ 𝑡 cos(𝑛𝑡) 𝑑𝑡 = 𝑛2

𝜔 𝜔2 ⎨0 {⎩0 for 𝑛 ≠ 0 even 
𝜋2 

𝜋 

3. ∫ 𝑡2 sin(𝜔𝑡) 𝑑𝑡 = 
−𝑡2 cos(𝜔𝑡) + 

2𝑡 sin(𝜔𝑡) + 
2 cos(𝜔𝑡) . 3′ . ∫ 𝑡2 sin(𝑛𝑡) 𝑑𝑡 = 

⎧{ 𝑛 
− 𝑛

4
3 

for 𝑛 odd 

𝜔 𝜔2 𝜔3 
0 

⎨{−𝜋2 

for 𝑛 ≠ 0 even 

𝑡2 sin(𝜔𝑡) + 
2𝑡 cos(𝜔𝑡) − 

2 sin(𝜔𝑡) 2𝜋(−1)𝑛 

4. ∫ 𝑡2 cos(𝜔𝑡) 𝑑𝑡 = . 4′ . ∫
𝜋 

𝑡2 cos(𝑛𝑡) 𝑑𝑡 = 

⎩ 𝑛 

𝜔 𝜔2 𝜔3 𝑛2
0 

If 𝑎 ≠ 𝑏 

1 + 
sin((𝑎 − 𝑏)𝑡) 

2 [sin((𝑎 + 𝑏)𝑡) 5. ∫ cos(𝑎𝑡) cos(𝑏𝑡) 𝑑𝑡 = ]𝑎 + 𝑏 𝑎 − 𝑏 

1 + 
sin((𝑎 − 𝑏)𝑡) 

2 
[−sin((𝑎 + 𝑏)𝑡) 6. ∫ sin(𝑎𝑡) sin(𝑏𝑡) 𝑑𝑡 = ]𝑎 + 𝑏 𝑎 − 𝑏 

1 + 
cos((𝑎 − 𝑏)𝑡) 

2 
[−cos((𝑎 + 𝑏)𝑡) 7. ∫ cos(𝑎𝑡) sin(𝑏𝑡) 𝑑𝑡 = ]𝑎 + 𝑏 𝑎 − 𝑏 

1 
2 [sin(2𝑎𝑡)8. ∫ cos(𝑎𝑡) cos(𝑎𝑡) 𝑑𝑡 = + 𝑡] 2𝑎 

1 
2 

[−sin(2𝑎𝑡)9. ∫ sin(𝑎𝑡) sin(𝑎𝑡) 𝑑𝑡 = + 𝑡] 2𝑎 

10. ∫ sin(𝑎𝑡) cos(𝑎𝑡) 𝑑𝑡 = −cos 
4𝑎
(2𝑎𝑡) 

Some Fourier series: 
1. Period 2𝜋 square wave sq(𝑡): You should know this for the quiz. 
2. Period 2 triangle wave tri2(𝑡): 

Over one period, −1 ≤ 𝑡 ≤ 1, tri2(𝑡) = |𝑡|. 

1 + 
cos(5𝜋𝑡) tri2(𝑡) = 2 − 𝜋

4
2 (cos(𝜋𝑡) + 

cos(3𝜋𝑡) + ⋯) 32 52 

1 cos(𝑛𝜋𝑡) = 2 − 4 .𝜋2 
∑ 𝑛2

𝑛 odd 

1 



Problem 1. 
Solve 𝑥′ + 𝑘𝑥 = 𝑓(𝑡), where 𝑓(𝑡) is the period 2𝜋 triangle wave with 𝑓(𝑡) = |𝑡| on [−𝜋, 𝜋]. 
Solution: We know the Fourier series for 𝑓(𝑡), but we’ll sketch the computation. 
𝑓(𝑡) is even, so 𝑏𝑛 = 0. We use the evenness to simplify the integral for the cosine coefficients 

𝜋 𝜋 2 2 if 𝑛 odd 𝜋 𝑛2𝑎0 = 𝑡 𝑑𝑡 = 𝜋, 𝑎𝑛 = 𝑡 cos(𝑛𝑡) 𝑑𝑡 = {− 4 

𝜋 ∫
0 𝜋 ∫

0 0 if 𝑛 ≠ 0 even 

𝜋 cos(𝑛𝑡)So the DE is: 𝑥′ + 𝑘𝑥 = 2 − 4 .𝜋 ∑ 𝑛2
𝑛 𝑜𝑑𝑑 

Superposition: We’ll solve for each piece first: 𝑥′
𝑛 + 𝑘𝑥𝑛 = cos(𝑛𝑡) 

In preparation for using the sinusoidal response formula (SRF), we first compute 𝑃 (𝑖𝑛) in 
polar form. 

𝑃 (𝑖𝑛) = 𝑘 + 𝑖𝑛 = √𝑘2 + 𝑛2 𝑒𝑖𝜙(𝑛), where 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = tan−1 𝑛/𝑘 in Q1 . 

𝑥𝑛,𝑝(𝑡) = 
cos(𝑛𝑡 − 𝜙(𝑛)) = 

cos√(𝑛𝑡 − 𝜙(𝑛))
𝑘2 + 𝑛2The SRF gives: .|𝑃 (𝑖𝑛)| 

Separate calculation for 𝑛 = 0: 𝑥′
0 + 𝑘𝑥0 = 𝜋/2 ⇒ 𝑥0,𝑝 = 𝜋/2𝑘. 

Superposition: 

𝑥𝑛,𝑝(𝑡) 𝜋 cos(𝑛𝑡 − 𝜙(𝑛)) 𝑥𝑝(𝑡) = 𝑥0,𝑝 − 
4 = .𝜋 

∑ 𝑛2 2𝑘 − 𝜋
4 ∑ 

𝑛2 √
𝑘2 + 𝑛2

𝑛 𝑜𝑑𝑑 𝑛 𝑜𝑑𝑑 

Problem 2. 
Solve 𝑥″ + 2𝑥′ + 9𝑥 = 𝑔(𝑡) where 𝑔(𝑡) is the period 2 triangle wave with 𝑔(𝑡) = |𝑡| on [−1, 1]. 

Solution: This is just tri2(𝑥) given in the integral table above: 

1 cos(𝑛𝜋𝑡) 𝑔(𝑡) = 2 − 
4 .𝜋2 

∑ 𝑛2
𝑛 𝑜𝑑𝑑 

(Or, if you remember, the Fourier series for our standard period 2𝜋 triangle wave tri(𝑡), you 
can use 𝑔(𝑡) = tri(𝜋𝑡)/𝜋. Or you can just compute the integrals for the coefficients.) 

Use the SRF to solve for each piece: 

𝑥″
𝑛 + 2𝑥′

𝑛 + 9𝑥𝑛 = cos(𝑛𝜋𝑡). 

First we find 𝑃 (𝑖𝑛) in polar form: 𝑃(𝑖𝜋𝑛) = 9−(𝜋𝑛)2+2𝑖𝜋𝑛 = √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 𝑒𝑖𝜙(𝑛), 
where 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = tan−1(2𝑛𝜋/(9 − 𝜋2𝑛2)) in Q1 or Q2. 

cos(𝑛𝜋𝑡 − 𝜙(𝑛)) So, 𝑥𝑛,𝑝(𝑡) = √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 
. 



Separate calculation for 𝑛 = 0: 1𝑥″ 
0 + 2𝑥′ 

0 + 9𝑥0 = 2 
⇒ 𝑥0,𝑝 = 1/18. 

Superposition: 
1 cos(𝑛𝜋𝑡 − 𝜙(𝑛)) 𝑥𝑝(𝑡) = .18 − 𝜋

4
2 

∑ 
𝑛 𝑜𝑑𝑑 𝑛2 √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 

(Don’t forget, you should show the dependence on 𝑛 by writing 𝜙(𝑛).) 

Problem 3. ∞ cos(𝑛𝑡)Solve 𝑥″ + 4𝑥 = ∑ . Look out for resonance. 𝑛2
𝑛=1 

Solution: Solve this in pieces: 𝑥″
𝑛 + 4𝑥𝑛 = cos(𝑛𝑡). 

The characteristic polynomial is 𝑃(𝑟) = 𝑟2 + 4. So, 𝑃(𝑖𝑛) = 4 − 𝑛2 and 

for 𝑛 < 2 |𝑃 (𝑖𝑛)| = |4 − 𝑛2|, 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = {0 

𝜋 for 𝑛 > 2 

We use the SRF for the cases 𝑛 ≠ 2: 

𝑥𝑛,𝑝(𝑡) = 
cos(𝑛𝑡 − 𝜙(𝑛)) = 

cos(𝑛𝑡 − 𝜙(𝑛)) .|𝑃 (𝑖𝑛)| |4 − 𝑛2| 

For the case 𝑛 = 2, we need the extended SRF: 𝑃 ′(2𝑖) = 4𝑖. So, |𝑃 ′(2𝑖)| = 4 and 
Arg(𝑃 ′(2𝑖)) = 𝜋/2. Thus, 

𝑡 cos(2𝑡 − 𝜋/2) 𝑥2,𝑝(𝑡) = .4 
By superposition 

∞ 𝑥𝑛,𝑝(𝑡) = 
cos(𝑡) + 

𝑡 sin(2𝑡) + 
cos(3𝑡 − 𝜋) + 

cos(4𝑡 − 𝜋) + 
cos(5𝑡 − 𝜋) 𝑥𝑝(𝑡) = ∑ + … .𝑛2 3 22 ⋅ 4 32 ⋅ 5 42 ⋅ 12 52 ⋅ 21𝑛=1 

Since cos(𝑛𝑡 − 𝜋) = − cos(𝑛𝑡), we can also write 

+ 
𝑡 sin(2𝑡) − 

cos(3𝑡) − 
cos(4𝑡) − 

cos(5𝑡)𝑥𝑝(𝑡) = 
cos(𝑡) − … .3 16 45 192 525 

Problem 4. 
(a) The function 𝑓(𝑡) is periodic with period 2. On the interval −1 ≤ 𝑡 < 1 we have
𝑓(𝑡) = 𝑡. Find the Fourier series for 𝑓(𝑡). 
Solution: Here is the graph of 𝑓(𝑡): 

t−3 −1 1 3

· · · · · ·



We have 𝐿 = 1 and 𝑓(𝑡) is odd ⇒ 𝑓(𝑡) = ∑ 𝑏𝑛 sin(𝑛𝜋𝑡), where 

1 1 1 

+ 
sin(𝑛𝜋𝑡) 𝑏𝑛 = 2 ∫ 𝑓(𝑡) sin(𝑛𝜋𝑡) 𝑑𝑡 = 2 ∫ 𝑡 sin(𝑛𝜋𝑡) 𝑑𝑡 = 2 [−𝑡 cos(𝑛𝜋𝑡) = (−1)(𝑛+1) 2 

𝑛𝜋 (𝑛𝜋𝑡)2 
] 𝑛𝜋 

. 
0 0 0 

∞2 (−1)(𝑛+1) sin(𝑛𝜋𝑡) So, 𝑓(𝑡) = ∑ .𝜋 𝑛 𝑛=1 

(b) (10)Find a periodic solution to 𝑥″ + 36𝑥 = 𝑓(𝑡). 
Solution: We will use superposition, so first we solve individual equations 

𝑥″
𝑛 + 36𝑥𝑛 = sin(𝑛𝜋𝑡). 

if 𝑛 = 1We have 𝑃(𝑖𝑛𝜋) = 36−𝑛2𝜋2. So, |𝑃 (𝑖𝑛𝜋)| = |36−𝑛2𝜋2|, 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛𝜋)) = {0 

𝜋 if 𝑛 > 1 
. 

sin(𝑛𝜋𝑡 − 𝜙(𝑛)) Thus, 𝑥𝑛,𝑝(𝑡) = .|36 − 𝑛2𝜋2| 
∞2 (−1)(𝑛+1) sin(𝑛𝜋𝑡 − 𝜙(𝑛)) Now by superposition: 𝑥𝑝(𝑡) = ∑ .𝜋 𝑛=1 

𝑛|36 − 𝑛2𝜋2| 

(c) (5)Which frequency in the Fourier series for 𝑓(𝑡) is closest to resonance for the system 
in Part (b). 
Solution: The natural frequency is 

√
36 = 6. The frequency of the 𝑛th term is 𝑛𝜋 ⇒ the 

term with 𝑛 = 2 is closest to resonance 

Problem 5. (Heat equation with boundary and initial conditions) 

For 0 ≤ 𝑥 ≤ 𝜋 and 𝑡 > 0 we have 

PDE: 𝑢𝑡 = 𝑢𝑥𝑥 

BC: 𝑢(0, 𝑡) = 0 and 𝑢(𝜋, 𝑡) = 0 for all 𝑡 > 0. 
IC: 𝑢(𝑥, 0) = 𝑓(𝑥) for 0 ≤ 𝑥 ≤ 𝜋. 
Showing all the steps clearly, use the separation of variables method to get the general 
solution 𝑢(𝑥, 𝑡) which satisfies both the PDE and BC. 
Then give formulas for the Fourier coefficients of the solution which also satisfies the IC . 
These formulas will have to be given in terms of 𝑓. 
Solution: We break the method into steps. 
Step 1. Find separated solutions to the PDE, i.e., guess 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 
Plug into PDE: 𝑋𝑇 ′ = 𝑋″𝑇 

𝑋″(𝑥) 𝑇 ′(𝑡)A little algebra: = = constant = −𝜆. (It equals a constant because 𝑥 and 𝑡 𝑋(𝑥) 𝑇 (𝑡) 
are independent variables.) 

More algebra gives two ODEs: 𝑋″ + 𝜆𝑋 = 0, 𝑇 ′ + 𝜆𝑇 = 0. 
We have three cases: 



Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(
√

𝜆𝑥) + 𝑏 sin(
√

𝜆𝑥), 𝑇 (𝑡) = 𝑒−𝜆𝑡. 
Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐. 
Case (iii) 𝜆 < 0: This case never produces nontrivial solutions satisfying the BC, so we 
ignore it. 
Step 2. (Modal solutions) Find the separated solutions which also satisfy the BC. 
For separated solutions, the BC are 

𝑋(0) = 0, 𝑋(𝜋) = 0. 

Case (i) BC: 𝑋(0) = 𝑎 = 0 and 𝑋(𝜋) = 𝑎 cos(
√

𝜆𝜋) + 𝑏 sin(
√

𝜆𝜋). 
The nontrivial solutions have 𝑎 = 0, 𝑏 arbitrary and 

√
𝜆 = 𝑛, for 𝑛 = 1, 2, 3, …. Thus, the 

separated solutions satisfying the PDF and BC are 

𝑢𝑛(𝑥, 𝑡) = 𝑏𝑛 sin(𝑛𝑥)𝑐𝑛𝑒−𝑛2𝑡. 

Case (ii) BC: 𝑋(0) = 𝑎 = 0 and 𝑋(𝜋) = 𝑎 + 𝑏𝜋 = 0. 
Solving, we get 𝑎 = 0 and 𝑏 = 0, i.e., this case only produces trivial solutions. 
Case (iii) Ignore. 
Step 3. Use superposition to get the general solution satisfying both the PDF and the BC. 

∞
𝑢(𝑥, 𝑡) = ∑ 𝑏𝑛 sin(𝑛𝑥)𝑒−𝑛2𝑡 

𝑛=1 

Step 4. Use the initial conditions to compute the coefficients. 
𝑢(𝑥, 0) = ∑ 𝑏𝑛 sin(𝑛𝑥) = 𝑓(𝑥) on the interval [0, 𝜋]. So 𝑏𝑛 are the Fourier sine coefficients 
for 𝑓(𝑥). Since 𝑓(𝑥) is not specified, the best we can do is: 

𝑏𝑛 = 
𝜋 

𝑓(𝑥) sin 𝑛𝑥 𝑑𝑥. 𝜋
2 ∫ 

0 

Problem 6. 
(a) Write down the wave equation with IC’s and BC’s for the string of length 1, with clamped 
ends, wave speed 2, initially at equilibrium, struck at time 0. Then derive the Fourier series 
solution using separation of variables. 
Solution: PDE: 𝑦𝑡𝑡 = 4𝑦𝑥𝑥 

BC: 𝑦(0, 𝑡) = 𝑦(1, 𝑡) = 0 

IC: 𝑦(𝑥, 0) = 0 (initially at equilibrium) 
𝑦𝑡(𝑥, 0) = 𝑓(𝑥) (initial velocity right after being struck) 

We solve using the Fourier method of separation of variables. 
Step 1. Find separated solutions to the PDE: 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) 



Substituting into the PDE: 

𝑋𝑇 ″ = 4𝑋″𝑇 ⇒ 
𝑋″(𝑥) 𝑇 ″(𝑡)= 𝑋(𝑥) 4𝑇 (𝑡) 

= constant = −𝜆. 

(Since 𝑥 and 𝑡 are independent, a function of 𝑥 = function of 𝑡 implies both must be 
constant.) 

Thus we have two ODES: 𝑋″ + 𝜆𝑋 = 0, 𝑇 ″ + 4𝜆𝑇 = 0. 
As always, we have cases. 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆 𝑥) + 𝑏 sin(

√
𝜆 𝑥), 𝑇 (𝑡) = 𝑐 cos(2

√
𝜆 𝑡) + 𝑑 sin(2

√
𝜆 𝑡). 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐 + 𝑑𝑡 
Case (iii) 𝜆 < 0: Ignore –only gives trivial modal solutions. 

Step 2. (Modal solutions) Find the separated solutions which also satisfy the BC. 
For separated solutions, the BC are 

𝑋(0) = 0, 𝑋(1) = 0. 

Case (i) BC: 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 sin(
√

𝜆) + 𝑏 sin(
√

𝜆) = 0. 
The nontrivial solutions have 𝑎 = 0, 𝑏 arbitrary and sin(

√
𝜆) = 0. This implies 

√
𝜆 = 𝑛𝜋, 

where 𝑛 = 1, 2, …. 
Index solutions by 𝑛: 𝑋𝑛(𝑥) = sin(𝑛𝜋𝑥); 𝑇𝑛(𝑡) = 𝑐𝑛 cos(2𝑛𝜋𝑡) + 𝑑𝑛 sin(2𝑛𝜋𝑡); So, 

𝑦𝑛(𝑥, 𝑡) = 𝑋𝑛(𝑥)𝑇𝑛(𝑡) = sin(𝑛𝜋𝑥)(𝑐𝑛 cos(2𝑛𝜋𝑡) + 𝑑𝑛 sin(2𝑛𝜋𝑡)). 

Case (ii) BC: 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 + 𝑏 = 0. 
Thus, 𝑎 = 0, 𝑏 = 0, i.e., there are only trivial solutions in this case. 
Case (iii) We know this case only produces trivial solutions, so we skip it. 

Step 3. Use superposition to give the general solution. 
∞

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝜋𝑥)(𝑐𝑛 cos(2𝑛𝜋𝑡) + 𝑑𝑛 sin(2𝑛𝜋𝑡)). 
𝑛=1 

Step 4. Use the initial conditions to compute the coefficients. 
∞

𝑦(𝑥, 0) = ∑ 𝑐𝑛 sin(𝑛𝜋𝑥) = 0. So 𝑐𝑛 = 0 for all 𝑛. 
𝑛=1 

∞
𝑦𝑡(𝑥, 0) = ∑ 𝑑𝑛2𝑛𝜋 sin(𝑛𝜋𝑥) = 𝑓(𝑥). So 𝑑𝑛2𝑛𝜋 are the Fourier sine coefficients of the 

𝑛=1 
function 𝑓(𝑥) on [0, 1]. That is, 

𝑑𝑛2𝑛𝜋 = 2 ∫
1

𝑓(𝑥) sin(𝑛𝜋𝑥) 𝑑𝑥 or 
0 

𝑑𝑛 = 
1 

𝑓(𝑥) sin(𝑛𝜋𝑥) 𝑑𝑥 .𝑛𝜋
1 ∫ 

0 



With 𝑑𝑛 as just defined, the Fourier solution to the problem is 

∞
𝑦(𝑥, 𝑡) = ∑ 𝑑𝑛 sin(𝑛𝜋𝑥) sin(2𝑛𝜋𝑡) . 

𝑛=1 

(b) Give the explicit solution to the equation of Part (a) when the initial velocity is given 
by 𝑓(𝑥) = 𝑥 on 0 < 𝑥 < 1 (as if that were possible!). 
Solution: From the solution to Part (a) and the integral table we have 

(−1)𝑛+1 1 (−1)𝑛+1
∫

1 

𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥 = ⇒ 𝑑𝑛 = 
1 

𝑥 sin(𝑛𝜋𝑥) 𝑑𝑥 = .𝑛𝜋 𝑛𝜋 
∫ 𝑛2𝜋2

0 0 

∞ ∞ (−1)𝑛+1 

Thus, 𝑦(𝑥, 𝑡) = ∑ 𝑑𝑛 sin(𝑛𝜋𝑥) sin(2𝑛𝜋𝑡) = ∑ sin(𝑛𝜋𝑥) sin(2𝑛𝜋𝑡) .𝑛2𝜋2
𝑛=1 𝑛=1 

Problem 7. 
Consider the following partial differential equation with boundary and initial conditions: 
PDE: 𝑢𝑡(𝑥, 𝑡) + 𝑢(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡); defined for 0 < 𝑥 < 1. 
BC: 𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0. 
IC: 𝑢(𝑥, 0) = 𝑓(𝑥). 
(a) The separation of variables technique looks for solutions to the PDE of the form 𝑢(𝑥, 𝑡) = 
𝑋(𝑥)𝑇 (𝑡). Give the ordinary DEs satisfied by 𝑋 and 𝑇 . 
You do not have to solve these DEs. 
Solution: Separated solution: 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 

= 𝑋″𝑇 ⇒ 
𝑇 ′ + 𝑇 𝑋″ 

Substitution: 𝑋𝑇 ′ + 𝑋𝑇 = = −𝜆 for some constant 𝜆.𝑇 𝑋 
(We must have a constant because we have a function of 𝑡 = a function of 𝑥.) 

⇒ 𝑋″ + 𝜆𝑋 = 0 and 𝑇 ′ + (1 + 𝜆)𝑇 = 0. 

(b) To make your life easier, we’ll tell you that, in the usual notation, the only separated 
solutions satisfying the boundary conditions have 𝜆 > 0 and are of the form 

𝑋(𝑥) = 𝑎 cos(
√

𝜆 𝑥) + 𝑏 sin(
√

𝜆 𝑥) and 𝑇 (𝑡) = 𝑒−(1+𝜆)𝑡. 

Of course, not all 𝜆 > 0 work. Find all the separated solutions to the PDE that satisfy the 
boundary conditions. Then give the general solution to the PDE with BC. 
Solution: For separated solutions the BC are 𝑋(0) = 0, 𝑋(1) = 0. 
BC: 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 cos(

√
𝜆) + 𝑏 sin(

√
𝜆) = 0. 

With 𝑎 = 0, the second equation becomes 𝑏 sin(
√

𝜆) = 0. If 𝑏 = 0, we have a trivial solution. 
So, the nontrivial solutions have sin(

√
𝜆) = 0, ⇒ 

√
𝜆 = 𝑛𝜋 for some positive integer 𝑛. 

Modal solutions: 𝑢𝑛(𝑥, 𝑡) = 𝑏𝑛 sin(𝑛𝜋𝑥) 𝑒−(1+𝑛2𝜋2)𝑡 for 𝑛 = 1, 2, 3, … . 



∞ ∞ 

General solution by superposition: 𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = ∑ 𝑏𝑛 sin(𝑛𝜋𝑥)𝑒−(1+𝑛2𝜋2)𝑡 . 
𝑛=1 𝑛=1 

(c) Give the Fourier solution to PDE with BC and IC. Be sure to write down the integral 
formula for any coefficients used. (Since 𝑓 is not specified you cannot compute the integrals.) 

Solution: IC: 𝑢(𝑥, 0) = ∑ 𝑏𝑛 sin(𝑛𝜋𝑥) = 𝑓(𝑥). So, 𝑏𝑛 = Fourier sine coefficient of 𝑓 : 

2𝑏𝑛 = 
1 

𝑓(𝑥) sin(𝑛𝜋𝑥) 𝑑𝑥. 1 
∫

0 

(d) We can add input to the PDE: 𝑢𝑥𝑥 = 𝑢𝑡 + 𝑢 + 𝑥𝑒−𝑡. 
A particular solution to this PDE also satisfying the BC of Part (a) is: 𝑢𝑝(𝑥, 𝑡) = 

(𝑥
6
3 

− 
𝑥 
6 

) 𝑒−𝑡. 

What are all the solutions to this PDE which also satisfy the BC? 

Solution: Using linearity, the general solution is the particular solution + the general ho-
∞ 

6 
− 𝑥 mogeneous solution found in Part (c): 𝑢(𝑥, 𝑡) = (𝑥3 

6 ) 𝑒−𝑡 + ∑ 𝑏𝑛 sin(𝑛𝜋𝑥)𝑒−(1+𝑛2𝜋2)𝑡. 
𝑛=1 

Note well: When using superposition, you need to make sure that it applies to both the 
PDE and the BC. 

Problem 8. 
Solve the wave equation with boundary and initial conditions. 
PDE: 𝑦𝑡𝑡 = 𝑦𝑥𝑥 for 0 ≤ 𝑥 ≤ 1, 𝑡 > 0 

BC: 𝑦(0, 𝑡) = 0, 𝑦(1, 𝑡) = 0 

IC: 𝑦(𝑥, 0) = 0, 𝑦𝑡(𝑥, 0) = 30. 
Solution: Step 1. Find separated solutions to the PDE: 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 
Substituting into the PDE: 

𝑋″(𝑥) 𝑇 ″(𝑡)𝑋𝑇 ″ = 𝑋″𝑇 , a little algebra gives = = constant = −𝜆 𝑋(𝑥) 𝑇 (𝑡) 

Some algebra gives two ordinary differential equations 

𝑋″ + 𝜆𝑋 = 0 𝑇 ″ + 𝜆𝑇 = 0. 

For 𝑋 the characteristic roots are 𝑟 = ±
√

−𝜆. There are 3 cases: 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆 𝑥) + 𝑏 sin(

√
𝜆 𝑥). 

For this 𝜆 we have 𝑇 (𝑡) = 𝑐 cos(
√

𝜆 𝑡) + 𝑑 sin(
√

𝜆 𝑡). 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥. 
For this 𝜆 we have 𝑇 (𝑡) = 𝑐 + 𝑑𝑡. 



Case (iii) 𝜆 < 0: Never gives nontrivial modal solutions. 

Step 2. (Modal solutions) Find the separated solutions which also satisfy the BC. 
For separated solutions, the BC are 

𝑋(0) = 0, 𝑋(1) = 0. 

Case (i) BC: 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 cos(
√

𝜆) + 𝑏 sin(
√

𝜆) = 0. 
With 𝑎 = 0, the second condition is 𝑏 sin(

√
𝜆) = 0. If 𝑏 = 0, the solution is trivial. So, we 

need sin(
√

𝜆) = 0, i.e., 
√

𝜆 = 𝑛𝜋 for any integer 𝑛. 
Index solutions by 𝑛: 𝑋𝑛(𝑥) = 𝑏𝑛 sin(𝑛𝜋𝑥), 𝑇𝑛(𝑡) = 𝑐 cos(𝑛𝜋𝑡) + 𝑑 sin(𝑛𝜋𝑡). So, we have 
modal solutions 

𝑦𝑛(𝑥, 𝑡) = sin(𝑛𝜋𝑥)(𝑐𝑛 cos(𝑛𝜋𝑡) + 𝑑𝑛 sin(𝑛𝜋𝑡)) for 𝑛 = 1, 2, … 

Case (ii) BC: 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 + 𝑏 = 0. 
Thus, 𝑎 = 0, 𝑏 = 0, i.e., there are only trivial solutions in this case. 
Case (iii) 𝜆 < 0: We can always ignore this case. 

Step 3. Use superposition to get the general solution. 
Using superposition we get that the general solution to the PDE + BC is 

∞ ∞
𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝜋𝑥)(𝑐𝑛 cos(𝑛𝜋𝑡) + 𝑑𝑛 sin(𝑛𝜋𝑡)) 

𝑛=1 𝑛=1 

Step 4. Use the initial conditions to determine the coefficients. 
IC 𝑦(𝑥, 0) = 0: 𝑦(𝑥, 0) = ∑∞ 

𝑛=1 𝑐𝑛 sin(𝑛𝜋𝑥) = 0. This is a Fourier sine series for 0, i.e., all 
the coefficients 𝑐𝑛 = 0. 
IC 𝑦𝑡(𝑥, 𝑡) = 30: 𝑦𝑡(𝑥, 0) = ∑∞ This is a Fourier sine series for 30 𝑛=1 𝑛𝜋𝑑𝑛 sin(𝑛𝜋𝑥) = 30. 
on [0,1]. We recognize this as the Fourier series for the odd period 2 square wave. 

∞ 120 sin(𝑛𝜋𝑥) ∑ 𝑛𝜋𝑑𝑛 sin(𝑛𝜋𝑥) = 30 = ∑ .𝜋 𝑛 𝑛=1 𝑛 𝑜𝑑𝑑 

for 𝑛 odd for 𝑛 odd 𝑛𝜋 𝑛2𝜋2So, 𝑛𝜋𝑑𝑛 = {
120 

. We have 𝑑𝑛 = { 
120 

0 for 𝑛 even 0 for 𝑛 even. 

Our solution is 

∞ 120 sin(𝑛𝜋𝑥) sin(𝑛𝜋𝑡) 𝑦(𝑥, 𝑡) = ∑ 𝑑𝑛 sin(𝑛𝜋𝑥) sin(𝑛𝜋𝑡) = ∑ .𝜋2 𝑛2
𝑛=1 𝑛 odd 

Problem 9. 
Solve the heat equation with insulated ends. 



(Here’s a problem that gives a cosine series so the 𝜆 = 0 case is important.) 

PDE: 𝑢𝑡 = 3𝑢𝑥𝑥 for 0 ≤ 𝑥 ≤ 1, 𝑡 > 0 

BC: 𝑢𝑥(0, 𝑡) = 0, 𝑢𝑥(1, 𝑡) = 0 

IC: 𝑢(𝑥, 0) = 𝑥. 
Solution: We’ll do this with fewer words than in previous problems. 
Step 1. Separated solutions: Try 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 
Substitution gives 

𝑋(𝑥)″ 𝑇 (𝑡)′ 

𝑋𝑇 ′ = 3𝑋″𝑇 ⇒ = 3𝑇 (𝑡) 
= constant = −𝜆 ⇒ 𝑋″ +𝜆𝑋 = 0, 𝑇 ′ +3𝜆𝑇 = 0.𝑋(𝑥) 

Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(
√

𝜆 𝑥) + 𝑏 sin(
√

𝜆 𝑥), 𝑇 (𝑡) = 𝑐𝑒−3𝜆𝑡 

So, 𝑢(𝑥, 𝑡) = (𝑎 cos(
√

𝜆 𝑥) + 𝑏 sin(
√

𝜆 𝑥)) 𝑐𝑒−3𝜆𝑡. 
Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐. So, 𝑢(𝑥, 𝑡) = (𝑎 + 𝑏𝑥)𝑐, 
Case (iii) 𝜆 < 0: Ignore, this case never produces nontrivial modal solutions. 

Step 2. (Modal solutions) Find the separated solutions which also satisfy the BC. 
For separated solutions, the BC are 𝑋′(0) = 0, 𝑋′(1) = 0. 
Case (i) BC: 𝑋′(0) = 

√
𝜆 𝑏 = 0, 𝑋′(1) = −𝑎 sin(

√
𝜆) + 𝑏 cos(

√
𝜆) = 0. 

With 𝑏 = 0, the second condition is −𝑎 sin(
√

𝜆) = 0. For nontrivial solutions, we need 
sin(

√
𝜆) = 0. That is, 

√
𝜆 = 𝑛𝜋, 𝑛 = 1, 2, …. 

We have found modal solutions 𝑢𝑛(𝑥, 𝑡) = 𝑎𝑛 cos(𝑛𝜋𝑥)𝑒−3(𝑛𝜋)2𝑡 for 𝑛 = 1, 2, … 

(We combined 𝑎 and 𝑐 into one constant and added the index 𝑛.) 

Case (ii) BC: 𝑋′(0) = 𝑏 = 0, 𝑋′(1) = 𝑏 = 0. 
So, 𝑏 = 0 and 𝑎 is arbitrary, i.e., 𝑋(𝑥) = 𝑎. 

We have found one more modal solution. Let’s call it 𝑢0 = 𝑎0/2 . 

Case (iii) 𝜆 < 0: Never produces nontrivial solutions. 

Step 3. Superposition gives the general solution to PDE + BC. 
∞ ∞𝑎0𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑛(𝑥, 𝑡) = 2 

+ ∑ 𝑎𝑛 cos(𝑛𝜋𝑥)𝑒−3(𝑛𝜋)2𝑡 

𝑛=1 𝑛=1 

Step 4. IC: 𝑢(𝑥, 0) = 𝑎0/2 + ∑𝑛 𝑎𝑛 cos(𝑛𝜋𝑥) = 𝑥. 
This is the cosine series for 𝑥. The cosine series for 𝑥 is the same as the Fourier series for 
the triangle wave, tri2(𝑥) in the table. 

1 cos(𝑛𝜋𝑥) 4 for 𝑛 odd tri2(𝑥) = 2 − 
4 , i.e., 𝑎0 = 1, 𝑎𝑛 = {−𝑛2𝜋2

𝜋2 ∑ 𝑛2 0 for 𝑛 even.𝑛 odd 



Thus, 
1 cos(𝑛𝜋𝑥) 𝑒−3(𝑛𝜋)2𝑡 

𝑢(𝑥, 𝑡) = 2 − 
4 .𝜋2 

∑ 𝑛2
𝑛 odd 

End of practice quiz solutions 
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