Integral table

$$\int t \cos(\omega t) dt = \frac{t \sin(\omega t)}{\omega} + \frac{\cos(\omega t)}{\omega^2}$$

$$\int t \sin(\omega t) dt = -\frac{t \cos(\omega t)}{\omega} + \frac{\sin(\omega t)}{\omega^2}$$

$$\int t^2 \cos(\omega t) dt = \frac{t^2 \sin(\omega t)}{\omega} + \frac{2t \cos(\omega t)}{\omega^2} - \frac{2 \sin(\omega t)}{\omega^3}$$

$$\int t^2 \sin(\omega t) dt = -\frac{t^2 \cos(\omega t)}{\omega} + \frac{2t \sin(\omega t)}{\omega^2} + \frac{2 \cos(\omega t)}{\omega^3}$$

$$\int \cos(at) \cos(bt) dt = \frac{1}{2} \left[\frac{\sin((a+b)t)}{a+b} + \frac{\sin((a-b)t)}{a-b} \right]$$

$$\int \sin(at) \sin(bt) dt = \frac{1}{2} \left[-\frac{\sin((a+b)t)}{a+b} - \frac{\cos((a-b)t)}{a-b} \right]$$

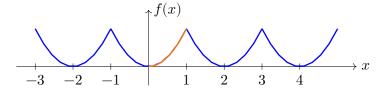
$$\int \cos(at) \cos(at) dt = \frac{1}{2} \left[\frac{\sin(2at)}{2a} + t \right]$$

$$\int \sin(at) \sin(at) dt = \frac{1}{2} \left[-\frac{\sin(2at)}{2a} + t \right]$$

$$\int \sin(at) \cos(at) dt = \frac{1}{2} \left[-\frac{\cos(2at)}{4a} + t \right]$$

Problem 23.1. Find the Fourier cosine series for the function $f(x) = x^2$ on [0, 1]. Graph the function and its even period 2 extension.

Solution: The graph of the even, period 2 extension is shown below. f(x) is shown as the orange segment above the interval [0, 1].



We have L = 1. The cosine coefficients are computed as usual. (Or just use a table of

integrals.)

$$\begin{aligned} a_0 &= 2\int_0^1 f(x) \, dx = 2\int_0^1 x^2 \, dx = \frac{2}{3}. \\ a_n &= 2\int_0^1 f(x) \cos(n\pi x) \, dx = 2\int_0^1 x^2 \cos(n\pi x) \, dx \\ &= 2\left[\frac{x^2 \sin(n\pi x)}{n\pi} + \frac{2x \cos(n\pi x)}{(n\pi)^2} - \frac{2 \sin(n\pi x)}{(n\pi)^3}\right]_0^1 \\ &= \frac{4(-1)^n}{(n\pi)^2}. \end{aligned}$$

Thus, $f(x) = \frac{1}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{\pi^2 n^2} \cos(n\pi x).$

Problem 23.2. Find Fourier cosine series for sin(x) on $[0, \pi]$.

Cosine series. $L = \pi$, Using the formula for a_n :

$$a_0 = \frac{2}{\pi} \int_0^{\pi} \sin(x) \, dx = \left[-\frac{2}{\pi} \cos(x) \right]_0^{\pi} = \frac{4}{\pi}.$$

By using an integral table (or applying the formula: $\cos(ax)\sin(bx) = \frac{\sin((a+b)x) - \sin((a-b)x)}{2}$) with a = n and b = 1, we get:

$$a_n = \frac{2}{\pi} \int_0^{\pi} \sin(x) \, \cos(nx) \, dx = -\frac{1}{\pi} \left[\frac{\cos((n+1)x)}{n+1} - \frac{\cos((n-1)x)}{n-1} \right]_0^{\pi} = \begin{cases} 0 & \text{for odd } n > 0 \\ \frac{-4}{\pi(n^2-1)} & \text{for even } n > 0. \end{cases}$$

(You have to be careful with n = 1, but the formula is correct.) Thus,

$$f(x) = \frac{2}{\pi} - \frac{4}{\pi} \left(\frac{\cos(2x)}{3} + \frac{\cos(4x)}{15} + \frac{\cos(6x)}{35} + \ldots \right) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n > 0, \text{ even}} \frac{\cos(nx)}{n^2 - 1}.$$

Important. This is only valid where f(x) is defined, i.e., on $[0, \pi]$.

Problem 24.3. (a) Solve x'' + 2x' + 9x = g(t), where g(t) is the period 2 triangle wave with g(t) = |t| on [-1, 1]. Find the Fourier series of g by using $g(t) = f(\pi t)/\pi$, where f is the standard period 2π triangle wave f(t) = |t| on $[-\pi, \pi]$.

Solution: We know
$$f(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\cos(nt)}{n^2}$$
. So,
 $g(t) = \frac{f(\pi t)}{\pi} = \frac{1}{2} - \frac{4}{\pi^2} \sum_{n \text{ odd}} \frac{\cos(n\pi t)}{n^2}$.

(Or you can just compute the integrals for the coefficients.)

Use the SRF to solve for each piece: (For ease of writing, we'll leave out the coefficients here and reintroduce them in the superposition step.)

$$x_n'' + 2x_n' + 9x_n = \cos(n\pi t)$$

First we find P(in) in polar form: $P(i\pi n) = 9 - (\pi n)^2 + 2i\pi n = \sqrt{(9 - \pi^2 n^2)^2 + 4\pi^2 n^2} e^{i\phi(n)}$, where $\phi(n) = \operatorname{Arg}(P(in)) = \tan^{-1}(2n\pi/(9 - \pi^2 n^2))$ in Q1 or Q2.

So, $x_{n,p}(t) = \frac{\cos(n\pi t - \phi(n))}{\sqrt{(9 - \pi^2 n^2)^2 + 4\pi^2 n^2}}.$

Separate calculation for n = 0: $x_0'' + 2x_0' + 9x_0 = \frac{1}{2} \Rightarrow x_{0,p}(t) = 1/18.$ Superposition:

Superposition:

$$x_p(t) = x_{0,p} - \frac{4}{\pi^2} \sum_{n \text{ odd}} \frac{x_{n,p}}{n^2} = \frac{1}{18} - \frac{4}{\pi^2} \sum_{n \text{ odd}} \frac{\cos(n\pi t - \phi(n))}{n^2 \sqrt{(9 - \pi^2 n^2)^2 + 4\pi^2 n^2}}$$

(Don't forget you need to include n in $\phi(n)$.)

(b) Is there a term in the Fourier series for g whose frequency is near the natural frequency of the system modeled by the DE? For the response found in Part (a), does this term have the largest amplitude?

Solution: The answers are yes and yes. The undamped, unforced system is x'' + 9x = 0. This has natural frequency $\omega_0 = 3$. The n = 1 term in the Fourier series for g(t) has frequency $\pi \approx 3.14$ which is close to ω_0 .

The amplitude of the response to the *n*th term is $\frac{4}{\pi^2 n^2 \sqrt{(9-\pi^2 n^2)^2 + 4\pi^2 n^2}}$. It is clear that the denominator is smallest for n = 1, therefore the amplitude is largest.

Problem 23.4. Find the Fourier sine series for f(x) = 1 on $[0, \pi]$. Solution: The odd extension is the square wave $\Rightarrow f(x) = \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\sin(nx)}{n}$.

Problem 24.5. Solve x' + kx = f(t), where f(t) is the period 2π triangle wave with f(t) = |t| on $[-\pi, \pi]$. (You can use the known series for f(t).)

Solution: We know the Fourier series for f(t), but we'll sketch the computation.

f(t) is even, so $\ b_n=0.$ We use the evenness to simplify the integral for the cosine coefficients

$$a_0 = \frac{2}{\pi} \int_0^{\pi} t \, dt = \pi, \qquad a_n = \frac{2}{\pi} \int_0^{\pi} t \cos(nt) \, dt = \begin{cases} -\frac{4}{\pi n^2} & \text{if } n \text{ odd} \\ 0 & \text{if } n \neq 0 \text{ even} \end{cases}$$

So the DE is: $x' + kx = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\cos(nt)}{n^2}.$

Superposition: We'll solve for each piece first: $x'_n + kx_n = \frac{4}{n^2 \pi} \cos(nt)$

We use the sinusoidal response formula (SRF). First compute P(in) in polar form.

$$P(in) = k + in = \sqrt{k^2 + n^2} e^{i\phi(n)}$$
, where $\phi(n) = \operatorname{Arg}(P(in)) = \tan^{-1}(n/k)$ in Q1.

The SRF gives:
$$x_{n,p}(t) = \frac{4\cos(nt - \phi(n))}{\pi n^2 |P(in)|} = \frac{4\cos(nt - \phi(n))}{\pi n^2 \sqrt{k^2 + n^2}}.$$

Separate calculation for n = 0: $x'_0 + kx_0 = \pi/2 \implies x_{0,p}(t) = \pi/2k$. Superposition:

$$x_p(t) = x_{0,p} - \sum_{n \text{ odd}} x_{n,p} = \frac{\pi}{2k} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\cos(nt - \phi(n))}{n^2 \sqrt{k^2 + n^2}}$$

Extra problems if time.

Problem 24.6. Solve $x'' + 4x = \sum_{n=1}^{\infty} \frac{\cos(nt)}{n^2}$. Look out for resonance.

Solution: Solve this in pieces: $x''_n + 4x_n = \cos(nt)$: (For practice, we leave out the coefficient $1/n^2$. We'll need to include it in the superposition at the end.) We'll need P(in) in polar form.

$$P(in) = 4 - n^2 = |4 - n^2|e^{i\phi(n)}, \text{ where } \phi(n) = \operatorname{Arg}(P(in)) = \begin{cases} 0 & \text{if } n = 1\\ \pi & \text{if } n \geq 3\\ \text{undefined} & \text{if } n = 2 \end{cases}$$

Using the SRF, for $n \neq 2$, we have $x_{n,p}(t) = \frac{\cos(nt - \phi(n))}{|P(in)|} = \frac{\cos(nt - \phi(n))}{|4 - n^2|}$. For n = 2, we need to use the extended SRF:

P'(r) = 2r. So, $P'(2i) = 4i = 4e^{i\pi/2}$. Now the extended SRF gives $x_{2,p}(t) = \frac{t\cos(2t - \pi/2)}{4}$.

Summarizing, we have
$$x_{n,p}(t) = \begin{cases} \frac{1}{2} & \text{for } n = 1\\ \frac{\cos(2t - \pi/2)}{4} & \text{for } n = 2\\ \frac{\cos(nt - \pi)}{|4 - n^2|} & \text{for } n \ge 3 \end{cases}$$

Now, by superposition,

$$x_p(t) = \sum_{n=1}^{\infty} \frac{x_{n,p}(t)}{n^2} = \frac{\cos(t)}{3} + \frac{t\cos(2t - \pi/2)}{16} + \sum_{n=3}^{\infty} \frac{\cos(nt - \pi)}{n^2 |4 - n^2|}.$$

Finally, using $\cos(2t - \pi/2) = \sin(2t)$ and $\cos(nt - \pi) = -\cos(nt)$, we can simplify the expression for $x_p(t)$:

$$x_p(t) = \frac{\cos(t)}{3} + \frac{t\sin(2t)}{16} - \sum_{n=3}^{\infty} \frac{\cos(nt)}{n^2 |4 - n^2|}$$

Problem 23.7. Find the Fourier series for the standard square wave shifted to the left so it's an even function, i.e., $sq(t + \pi/2)$.

Solution: Call the standard period 2π , odd, amplitude 1 square wave sq(t). We know that $sq(t) = \frac{4}{2\pi} \sum \frac{\sin(nt)}{\sin(nt)}$

$$sq(t) = \pi \sum_{n \text{ odd}} n$$

 $\text{Our function is } f(t) = sq(t+\pi/2) = \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\sin(n(t+\pi/2))}{n} = \frac{4}{\pi} \left(\cos(t) - \frac{\cos(3t)}{3} + \frac{\cos(5t)}{5} - \dots \right).$

This last equation follows because

 $\sin(\theta+\pi/2)=\cos(\theta),\quad \sin(\theta+3\pi/2)=-\cos(\theta),\quad \sin(\theta+5\pi/2)=\cos(\theta)\ldots.$

(You can see this either using the trig identity for sin(a + b) or by thinking about shifting a sine curve to the left by an odd multiple of $\pi/2$.)

Problem 22.8. (a) Compute the Fourier series for the even, period 2π function, with $f(t) = \pi t - t^2$ on $[0, \pi]$. The integral table provided should help.

Solution: Since f(t) is even, $b_n = 0$.

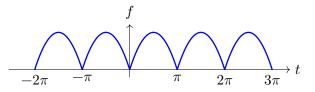
Using the integral table to compute the integrals, we find

$$a_n = \begin{cases} \frac{2}{\pi} \int_0^{\pi} (\pi t - t^2) \cos(nt) \, dt = -4/n^2 & \text{ for } n \text{ even, } n \neq 0 \\ \frac{2}{\pi} \int_0^{\pi} (\pi t - t^2) \cos(nt) \, dt = 0 & \text{ for } n \text{ odd} \\ \frac{2}{\pi} \int_0^{\pi} \pi t - t^2 \, dt = \pi^2/3 & \text{ for } n = 0. \end{cases}$$

 $\text{So, } f(t) = \frac{\pi^2}{6} - 4 \sum_{n \text{ even}} \frac{\cos(nt)}{n^2}.$

(b) Carefully sketch the graph of the Fourier series.

The function f(t) is continuous at all t, so the Fourier series converges to f(t)



(c) Challenge: Can you explain why the odd cosine coefficients are 0?

Solution: This is really a period π function so its Fourier series has fundamental angular frequency 2.

Problem 22.9. The function f(t) has period π . Over the interval $0 \le x < \pi$ we have $f(t) = \sin(t)$. Sketch the graph of f(t) over 3 full periods and find the Fourier series for f(t)

Solution: This is an even function, so we only need to compute the cosine coefficients (a_n) . We don't show all the details of the integrations. An integral table will help here

We have the half-period $L = \pi/2$. In this case, I think it is easiest to integrate over a full period $[0, \pi]$ rather than use the doubling trick for even functions.

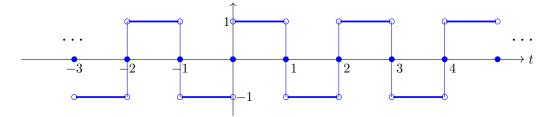
$$a_{0} = \frac{1}{\pi/2} \int_{0}^{\pi} \sin(t) dt = -\frac{2}{\pi} [\cos(t)]_{0}^{\pi} = \frac{4}{\pi}$$

$$a_{n} = \frac{1}{\pi/2} \int_{0}^{\pi} \sin(t) \cos(2nt) dt = \frac{2}{\pi} \cdot \frac{1}{2} \left(-\frac{\cos((2n+1)t)}{2n+1} + \frac{\cos((2n-1)t)}{2n-1} \right]_{0}^{\pi} = -\frac{4}{\pi(4n^{2}-1)}$$
So, $f(t) = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2nt)}{4n^{2}-1}$

$$f(t) = \frac{1}{\pi(2n+1)} \int_{0}^{\pi} \frac{1}{2\pi} \int_{0}^{\pi} \frac{1}$$

Problem 22.10. Let f(t) be the odd, period 2, amplitude 1 square wave. Carefully sketch the graph of the Fourier series.

Solution: The key to the sketch is to put dots at the midpoint of each jump and open circles at the ends of each line segment.



Problem 22.11. Recall the Fourier series for the period 2π triangle wave tri(t), where tri(t) = |t| for $-\pi \le t \le \pi$:

$$tri(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\cos(nt)}{n^2}.$$

Set t = 0 and show $\sum_{n \text{ odd}} \frac{1}{n^2} = \frac{\pi^2}{8}$. (This is only for fun, we will not test on this sort of problem.)

Solution: We know tri(0) = 0. Putting t = 0 in the Fourier series gives

$$\operatorname{tri}(0) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{1}{n^2} = 0.$$

A small amount of algebra now shows that $\sum_{n \text{ odd}} \frac{1}{n^2} = \frac{\pi^2}{8}$..

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.