
ES.1803 Problem Section 11, Spring 2024 Solutions 

Integral table 

𝑡 sin(𝜔𝑡) + 
cos(𝜔𝑡) ∫ 𝑡 cos(𝜔𝑡) 𝑑𝑡 = 𝜔 𝜔2 

+ 
sin(𝜔𝑡) ∫ 𝑡 sin(𝜔𝑡) 𝑑𝑡 = −𝑡 cos(𝜔𝑡)

𝜔 𝜔2 

𝑡2 sin(𝜔𝑡) + 
2𝑡 cos(𝜔𝑡) − 

2 sin(𝜔𝑡) ∫ 𝑡2 cos(𝜔𝑡) 𝑑𝑡 = 𝜔 𝜔2 𝜔3 

+ 
2𝑡 sin(𝜔𝑡) + 

2 cos(𝜔𝑡) ∫ 𝑡2 sin(𝜔𝑡) 𝑑𝑡 = −𝑡2 cos(𝜔𝑡)
𝜔 𝜔2 𝜔3 

1 + 
sin((𝑎 − 𝑏)𝑡) 

2 [sin((𝑎 + 𝑏)𝑡) ∫ cos(𝑎𝑡) cos(𝑏𝑡) 𝑑𝑡 = ]𝑎 + 𝑏 𝑎 − 𝑏 

1 + 
sin((𝑎 − 𝑏)𝑡) 

2 
[−sin((𝑎 + 𝑏)𝑡) ∫ sin(𝑎𝑡) sin(𝑏𝑡) 𝑑𝑡 = ]𝑎 + 𝑏 𝑎 − 𝑏 

2 [cos((𝑎 + 𝑏)𝑡) − 
cos((𝑎 − 𝑏)𝑡) ∫ cos(𝑎𝑡) sin(𝑏𝑡) 𝑑𝑡 = −1 ]𝑎 + 𝑏 𝑎 − 𝑏 

1 
2 [sin(2𝑎𝑡)∫ cos(𝑎𝑡) cos(𝑎𝑡) 𝑑𝑡 = + 𝑡] 2𝑎 

1 
2 

[−sin(2𝑎𝑡)∫ sin(𝑎𝑡) sin(𝑎𝑡) 𝑑𝑡 = + 𝑡] 2𝑎 

∫ sin(𝑎𝑡) cos(𝑎𝑡) 𝑑𝑡 = −cos 
4𝑎
(2𝑎𝑡) 

Problem 23.1. Find the Fourier cosine series for the function 𝑓(𝑥) = 𝑥2 on [0, 1]. Graph 
the function and its even period 2 extension. 
Solution: The graph of the even, period 2 extension is shown below. 𝑓(𝑥) is shown as the 
orange segment above the interval [0, 1]. 

𝑥 

𝑓(𝑥) 

−3 −2 −1 1 2 3 4 

We have 𝐿 = 1. The cosine coefficients are computed as usual. (Or just use a table of 

1 
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integrals.) 

1 1
𝑎0 = 2 ∫ 𝑓(𝑥) 𝑑𝑥 = 2 ∫ 𝑥2 𝑑𝑥 = 3

2. 
0 0 

𝑎𝑛 = 2 ∫
1

𝑓(𝑥) cos(𝑛𝜋𝑥) 𝑑𝑥 = 2 ∫
1 

𝑥2 cos(𝑛𝜋𝑥) 𝑑𝑥 
0 0 

1 

= 2 [𝑥2 sin(𝑛𝜋𝑥) + 
2𝑥 cos(𝑛𝜋𝑥) − 

2 sin(𝑛𝜋𝑥)]𝑛𝜋 (𝑛𝜋)2 (𝑛𝜋)3 
0 

= 
4(−1)𝑛 

.(𝑛𝜋)2 

1 ∞ (−1)𝑛 

Thus, 𝑓(𝑥) = 3 + 4 ∑ cos(𝑛𝜋𝑥). 𝜋2𝑛2
𝑛=1 

Problem 23.2. Find Fourier cosine series for sin(𝑥) on [0, 𝜋]. 
Cosine series. 𝐿 = 𝜋, Using the formula for 𝑎𝑛: 

𝜋 𝜋 

𝑎0 = sin(𝑥) 𝑑𝑥 = [−𝜋
2 cos(𝑥)∣ = 𝜋

2 ∫ 𝜋
4 . 

0 0 

sin((𝑎 + 𝑏)𝑥) − sin((𝑎 − 𝑏)𝑥) By using an integral table (or applying the formula: cos(𝑎𝑥) sin(𝑏𝑥) = )2 
with 𝑎 = 𝑛 and 𝑏 = 1, we get: 

𝜋 𝜋 2 
𝜋 [cos((𝑛 + 1)𝑥) − 

cos((𝑛 − 1)𝑥) = {0 for odd 𝑛 > 0 𝑎𝑛 = sin(𝑥) cos(𝑛𝑥) 𝑑𝑥 = − 1 ∣ −4𝜋 ∫
0 𝑛 + 1 𝑛 − 1 0 𝜋(𝑛2−1) for even 𝑛 > 0. 

(You have to be careful with 𝑛 = 1, but the formula is correct.) 

Thus, 

2 
𝜋 (cos(2𝑥) + 

cos(4𝑥) + 
cos(6𝑥) 2 cos(𝑛𝑥)𝑓(𝑥) = + …) = ∑𝜋 − 4 

3 15 35 𝜋 − 𝜋
4 

𝑛2 − 1 
. 

𝑛>0, even 

Important. This is only valid where 𝑓(𝑥) is defined, i.e., on [0, 𝜋]. 

Problem 24.3. (a) Solve 𝑥″ + 2𝑥′ + 9𝑥 = 𝑔(𝑡), where 𝑔(𝑡) is the period 2 triangle wave 
with 𝑔(𝑡) = |𝑡| on [−1, 1]. Find the Fourier series of 𝑔 by using 𝑔(𝑡) = 𝑓(𝜋𝑡)/𝜋, where 𝑓 is 
the standard period 2𝜋 triangle wave 𝑓(𝑡) = |𝑡| on [−𝜋, 𝜋]. 

𝜋 cos(𝑛𝑡)Solution: We know 𝑓(𝑡) = 2 − 
4 . So,𝜋 ∑ 𝑛2

𝑛 𝑜𝑑𝑑 

𝑓(𝜋𝑡) 1 cos(𝑛𝜋𝑡) 𝑔(𝑡) = = 2 − 
4 .𝜋 𝜋2 ∑ 𝑛2

𝑛 𝑜𝑑𝑑 

(Or you can just compute the integrals for the coefficients.) 
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Use the SRF to solve for each piece: (For ease of writing, we’ll leave out the coefficients 
here and reintroduce them in the superposition step.) 

𝑥″
𝑛 + 2𝑥′

𝑛 + 9𝑥𝑛 = cos(𝑛𝜋𝑡). 

First we find 𝑃 (𝑖𝑛) in polar form: 𝑃(𝑖𝜋𝑛) = 9−(𝜋𝑛)2+2𝑖𝜋𝑛 = √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 𝑒𝑖𝜙(𝑛), 
where 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = tan−1(2𝑛𝜋/(9 − 𝜋2𝑛2)) in Q1 or Q2. 

cos(𝑛𝜋𝑡 − 𝜙(𝑛)) So, 𝑥𝑛,𝑝(𝑡) = √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 
. 

Separate calculation for 𝑛 = 0: 𝑥″
0 + 2𝑥0

′ + 9𝑥0 = 2
1 ⇒ 𝑥0,𝑝(𝑡) = 1/18. 

Superposition: 

𝑥𝑛,𝑝 1 cos(𝑛𝜋𝑡 − 𝜙(𝑛)) 𝑥𝑝(𝑡) = 𝑥0,𝑝 − 
4 =𝜋2 

∑ 𝑛2 18 − 𝜋
4
2 

∑ 
𝑛 odd 𝑛 odd 𝑛2 √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 

. 

(Don’t forget you need to include 𝑛 in 𝜙(𝑛).) 

(b) Is there a term in the Fourier series for 𝑔 whose frequency is near the natural frequency 
of the system modeled by the DE? For the response found in Part (a), does this term have 
the largest amplitude? 

Solution: The answers are yes and yes. The undamped, unforced system is 𝑥″ + 9𝑥 = 0. 
This has natural frequency 𝜔0 = 3. The 𝑛 = 1 term in the Fourier series for 𝑔(𝑡) has 
frequency 𝜋 ≈ 3.14 which is close to 𝜔0. 

4The amplitude of the response to the 𝑛th term is It is clear 
𝜋2𝑛2 √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 

. 

that the denominator is smallest for 𝑛 = 1, therefore the amplitude is largest. 

Problem 23.4. Find the Fourier sine series for 𝑓(𝑥) = 1 on [0, 𝜋]. 
4 sin(𝑛𝑥)Solution: The odd extension is the square wave ⇒ 𝑓(𝑥) = .𝜋 ∑ 𝑛 𝑛 𝑜𝑑𝑑 

Problem 24.5. Solve 𝑥′ + 𝑘𝑥 = 𝑓(𝑡), where 𝑓(𝑡) is the period 2𝜋 triangle wave with
𝑓(𝑡) = |𝑡| on [−𝜋, 𝜋]. (You can use the known series for 𝑓(𝑡).) 

Solution: We know the Fourier series for 𝑓(𝑡), but we’ll sketch the computation. 
𝑓(𝑡) is even, so 𝑏𝑛 = 0. We use the evenness to simplify the integral for the cosine 
coefficients 

𝜋 𝜋 2 2 if 𝑛 odd 𝜋 𝑛2𝑎0 = 𝑡 𝑑𝑡 = 𝜋, 𝑎𝑛 = 𝑡 cos(𝑛𝑡) 𝑑𝑡 = {− 4 

𝜋 ∫ 𝜋 ∫ 0 if 𝑛 ≠ 0 even 0 0 

𝜋 cos(𝑛𝑡)So the DE is: 𝑥′ + 𝑘𝑥 = 2 − 4 .𝜋 ∑ 𝑛2
𝑛 𝑜𝑑𝑑 

Superposition: We’ll solve for each piece first: 𝑥𝑛
′ + 𝑘𝑥𝑛 = 𝑛

4
2𝜋 

cos(𝑛𝑡) 
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We use the sinusoidal response formula (SRF). First compute 𝑃 (𝑖𝑛) in polar form. 

𝑃 (𝑖𝑛) = 𝑘 + 𝑖𝑛 = √𝑘2 + 𝑛2 𝑒𝑖𝜙(𝑛), where 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = tan−1(𝑛/𝑘) in Q1 . 

4 cos(𝑛𝑡 − 𝜙(𝑛)) = 
4 cos(𝑛𝑡 − 𝜙(𝑛)) .The SRF gives: 𝑥𝑛,𝑝(𝑡) = 𝜋𝑛2|𝑃 (𝑖𝑛)| 𝜋𝑛2√

𝑘2 + 𝑛2 

Separate calculation for 𝑛 = 0: 𝑥′
0 + 𝑘𝑥0 = 𝜋/2 ⇒ 𝑥0,𝑝(𝑡) = 𝜋/2𝑘. 

Superposition: 

𝜋 cos(𝑛𝑡 − 𝜙(𝑛)) 𝑥𝑝(𝑡) = 𝑥0,𝑝 − ∑ 𝑥𝑛,𝑝 = .2𝑘 − 𝜋
4 ∑ 

𝑛2 √
𝑘2 + 𝑛2

𝑛 𝑜𝑑𝑑 𝑛 𝑜𝑑𝑑 

Extra problems if time. 

∞ cos(𝑛𝑡)Problem 24.6. Solve 𝑥″ + 4𝑥 = ∑ . Look out for resonance. 𝑛2
𝑛=1 

Solution: Solve this in pieces: 𝑥″
𝑛 + 4𝑥𝑛 = cos(𝑛𝑡): (For practice, we leave out the 

coefficient 1/𝑛2. We’ll need to include it in the superposition at the end.) 

We’ll need 𝑃 (𝑖𝑛) in polar form. 

⎧0 if 𝑛 = 1{
𝑃 (𝑖𝑛) = 4 − 𝑛2 = |4 − 𝑛2|𝑒𝑖𝜙(𝑛), where 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = 𝜋 if 𝑛 ≥ 3 ⎨{⎩undefined if 𝑛 = 2 

𝑥𝑛,𝑝(𝑡) = 
cos(𝑛𝑡 − 𝜙(𝑛)) = 

cos(𝑛𝑡 − 𝜙(𝑛)) Using the SRF, for 𝑛 ≠ 2, we have .|𝑃 (𝑖𝑛)| |4 − 𝑛2| 
For 𝑛 = 2, we need to use the extended SRF: 

𝑡 cos(2𝑡 − 𝜋/2) 𝑃 ′(𝑟) = 2𝑟. So, 𝑃 ′(2𝑖) = 4𝑖 = 4𝑒𝑖𝜋/2. Now the extended SRF gives 𝑥2,𝑝(𝑡) = .4 
cos(𝑡)⎧ 3 for 𝑛 = 1{ cos(2𝑡−𝜋/2) Summarizing, we have 𝑥𝑛,𝑝(𝑡) = ⎨ 4 for 𝑛 = 2

{ cos(𝑛𝑡−𝜋) ⎩ |4−𝑛2| for 𝑛 ≥ 3. 
Now, by superposition, 

∞ ∞𝑥𝑛,𝑝(𝑡) = 
cos(𝑡) + 

𝑡 cos(2𝑡 − 𝜋/2) cos(𝑛𝑡 − 𝜋) 𝑥𝑝(𝑡) = ∑ + ∑ . 
𝑛=1 

𝑛2 3 16 𝑛=3 
𝑛2|4 − 𝑛2| 

Finally, using cos(2𝑡 − 𝜋/2) = sin(2𝑡) and cos(𝑛𝑡 − 𝜋) = − cos(𝑛𝑡), we can simplify the 
expression for 𝑥𝑝(𝑡): 

+ 
𝑡 sin(2𝑡) ∞ cos(𝑛𝑡)𝑥𝑝(𝑡) = 

cos(𝑡) − ∑3 16 𝑛=3 
𝑛2|4 − 𝑛2| 



{

{
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Problem 23.7. Find the Fourier series for the standard square wave shifted to the left so 
it’s an even function, i.e., 𝑠𝑞(𝑡 + 𝜋/2). 
Solution: Call the standard period 2𝜋, odd, amplitude 1 square wave 𝑠𝑞(𝑡). We know that

4 sin(𝑛𝑡)𝑠𝑞(𝑡) = 𝜋 ∑ 𝑛 𝑛 𝑜𝑑𝑑 

4 sin(𝑛(𝑡 + 𝜋/2)) 4 + 
cos(5𝑡)Our function is 𝑓(𝑡) = 𝑠𝑞(𝑡+𝜋/2) = = 𝜋 

(cos(𝑡) − 
cos(3𝑡) − …).𝜋 ∑ 𝑛 3 5𝑛 𝑜𝑑𝑑 

This last equation follows because 

sin(𝜃 + 𝜋/2) = cos(𝜃), sin(𝜃 + 3𝜋/2) = − cos(𝜃), sin(𝜃 + 5𝜋/2) = cos(𝜃) … . 

(You can see this either using the trig identity for sin(𝑎 + 𝑏) or by thinking about shifting 
a sine curve to the left by an odd multiple of 𝜋/2.) 

Problem 22.8. (a) Compute the Fourier series for the even, period 2𝜋 function, with
𝑓(𝑡) = 𝜋𝑡 − 𝑡2 on [0, 𝜋]. The integral table provided should help. 
Solution: Since 𝑓(𝑡) is even, 𝑏𝑛 = 0. 
Using the integral table to compute the integrals, we find 

2⎧𝜋 ∫0
𝜋(𝜋𝑡 − 𝑡2) cos(𝑛𝑡) 𝑑𝑡 = −4/𝑛2 for 𝑛 even, 𝑛 ≠ 0

{ 2𝑎𝑛 = ⎨𝜋 ∫0
𝜋(𝜋𝑡 − 𝑡2) cos(𝑛𝑡) 𝑑𝑡 = 0 for 𝑛 odd 

{ 2⎩𝜋 ∫0
𝜋 𝜋𝑡 − 𝑡2 𝑑𝑡 = 𝜋2/3 for 𝑛 = 0. 

𝜋2 cos(𝑛𝑡)So, 𝑓(𝑡) = 6 
− 4 ∑ .𝑛2

𝑛 even 

(b) Carefully sketch the graph of the Fourier series. 
The function 𝑓(𝑡) is continuous at all 𝑡, so the Fourier series converges to 𝑓(𝑡) 

𝑓 

𝑡 𝜋 −𝜋 2𝜋 −2𝜋 3𝜋 

(c) Challenge: Can you explain why the odd cosine coefficients are 0? 

Solution: This is really a period 𝜋 function so its Fourier series has fundamental angular 
frequency 2. 

Problem 22.9. The function 𝑓(𝑡) has period 𝜋. Over the interval 0 ≤ 𝑥 < 𝜋 we have
𝑓(𝑡) = sin(𝑡). Sketch the graph of 𝑓(𝑡) over 3 full periods and find the Fourier series for
𝑓(𝑡) 

Solution: This is an even function, so we only need to compute the cosine coefficients (𝑎𝑛). 
We don’t show all the details of the integrations. An integral table will help here 
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We have the half-period 𝐿 = 𝜋/2. In this case, I think it is easiest to integrate over a full 
period [0, 𝜋] rather than use the doubling trick for even functions. 

𝜋 

𝑎0 = 
1 sin(𝑡) 𝑑𝑡 = − 2 [cos(𝑡)]𝜋 = 

4 
0𝜋/2 

∫ 𝜋 𝜋 0 
𝜋 𝜋 1 2 

2
1 (−cos((2𝑛 + 1)𝑡) + 

cos((2𝑛 − 1)𝑡) 4𝑎𝑛 = sin(𝑡) cos(2𝑛𝑡) 𝑑𝑡 = ⋅ ] = −𝜋/2 
∫ 𝜋 2𝑛 + 1 2𝑛 − 1 𝜋(4𝑛2 − 1) 0 0 

2 ∞ cos(2𝑛𝑡)So, 𝑓(𝑡) = ∑𝜋 − 𝜋
4 

4𝑛2 − 1 𝑛=1 

t

f(t)

−π π 2π

Problem 22.10. Let 𝑓(𝑡) be the odd, period 2, amplitude 1 square wave. Carefully sketch 
the graph of the Fourier series. 
Solution: The key to the sketch is to put dots at the midpoint of each jump and open 
circles at the ends of each line segment. 

t

· · · · · ·
−3 −2 −1 1 2 3 4

1

−1

Problem 22.11. Recall the Fourier series for the period 2𝜋 triangle wave tri(𝑡), where 
tri(𝑡) = |𝑡| for −𝜋 ≤ 𝑡 ≤ 𝜋: 

𝜋 cos(𝑛𝑡)tri(𝑡) = 2 − 4 .𝜋 ∑ 𝑛2
𝑛 odd 

Set 𝑡 = 0 and show ∑𝑛 odd 𝑛
1
2 = 𝜋

8
2 . (This is only for fun, we will not test on this sort of 

problem.) 

Solution: We know tri(0) = 0. Putting 𝑡 = 0 in the Fourier series gives 

𝜋 
𝜋 ∑ 𝑛

1
2tri(0) = 2 − 4 = 0. 

𝑛 odd 

1 𝜋2 

A small amount of algebra now shows that ∑ = 8 ..𝑛2
𝑛 odd 
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