Integral table

$$\int t \cos(\omega t) dt = \frac{t \sin(\omega t)}{\omega} + \frac{\cos(\omega t)}{\omega^2}$$

$$\int t \sin(\omega t) dt = -\frac{t \cos(\omega t)}{\omega} + \frac{\sin(\omega t)}{\omega^2}$$

$$\int t^2 \cos(\omega t) dt = \frac{t^2 \sin(\omega t)}{\omega} + \frac{2t \cos(\omega t)}{\omega^2} - \frac{2 \sin(\omega t)}{\omega^3}$$

$$\int t^2 \sin(\omega t) dt = -\frac{t^2 \cos(\omega t)}{\omega} + \frac{2t \sin(\omega t)}{\omega^2} + \frac{2 \cos(\omega t)}{\omega^3}$$

$$\int \cos(at) \cos(bt) dt = \frac{1}{2} \left[\frac{\sin((a+b)t)}{a+b} + \frac{\sin((a-b)t)}{a-b} \right]$$

$$\int \sin(at) \sin(bt) dt = \frac{1}{2} \left[-\frac{\sin((a+b)t)}{a+b} - \frac{\cos((a-b)t)}{a-b} \right]$$

$$\int \cos(at) \cos(at) dt = \frac{1}{2} \left[\frac{\sin(2at)}{2a} + t \right]$$

$$\int \sin(at) \sin(at) dt = \frac{1}{2} \left[-\frac{\sin(2at)}{2a} + t \right]$$

$$\int \sin(at) \cos(at) dt = \frac{1}{2} \left[-\frac{\cos(2at)}{2a} + t \right]$$

Problem 23.1. Find the Fourier cosine series for the function $f(x) = x^2$ on [0, 1]. Graph the function and its even period 2 extension.

Problem 23.2. Find Fourier cosine series for sin(x) on $[0, \pi]$.

Problem 24.3. (a) Solve x'' + 2x' + 9x = g(t), where g(t) is the period 2 triangle wave with g(t) = |t| on [-1, 1]. Find the Fourier series of g by using $g(t) = f(\pi t)/\pi$, where f is the standard period 2π triangle wave f(t) = |t| on $[-\pi, \pi]$.

(b) Is there a term in the Fourier series for g whose frequency is near the natural frequency of the system modeled by the DE? For the response found in Part (a), does this term have the largest amplitude?

Problem 23.4. Find the Fourier sine series for f(x) = 1 on $[0, \pi]$.

Problem 24.5. Solve x' + kx = f(t), where f(t) is the period 2π triangle wave with f(t) = |t| on $[-\pi, \pi]$. (You can use the known series for f(t).)

Extra problems if time.

Problem 24.6. Solve $x'' + 4x = \sum_{n=1}^{\infty} \frac{\cos(nt)}{n^2}$. Look out for resonance.

Problem 23.7. Find the Fourier series for the standard square wave shifted to the left so it's an even function, i.e., $sq(t + \pi/2)$.

Problem 22.8. (a) Compute the Fourier series for the even, period 2π function, with $f(t) = \pi t - t^2$ on $[0, \pi]$. The integral table provided should help.

(b) Carefully sketch the graph of the Fourier series.

(c) Challenge: Can you explain why the odd cosine coefficients are 0?

Problem 22.9. The function f(t) has period π . Over the interval $0 \le x < \pi$ we have $f(t) = \sin(t)$. Sketch the graph of f(t) over 3 full periods and find the Fourier series for f(t)

Problem 22.10. Let f(t) be the odd, period 2, amplitude 1 square wave. Carefully sketch the graph of the Fourier series.

Problem 22.11. Recall the Fourier series for the period 2π triangle wave tri(t), where tri(t) = |t| for $-\pi \le t \le \pi$:

$$\operatorname{tri}(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\cos(nt)}{n^2}.$$

Set t = 0 and show $\sum_{n \text{ odd}} \frac{1}{n^2} = \frac{\pi^2}{8}$. (This is only for fun, we will not test on this sort of problem.)

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.