
ES.1803 Problem Section 14, Spring 2024 Solutions 

Topic 31 (nonlinear mechanical systems) is not officially part of the course, but 
these problems are fun and will give you more practice with nonlinear systems. 

Problem 31.1. Nonlinear Spring 
The following DE models a nonlinear spring: 

⎧hard if 𝑐 < 0 (cubic term adds to linear force) {𝑚𝑥̈ = −𝑘𝑥 + 𝑐𝑥3 
⎨{soft if 𝑐 > 0 (cubic term opposes linear force).⎩ 

(a) Convert this to a companion system of first-order equations. 
Solution: The companion system is 

𝑥̇ = 𝑦 

𝑦 ̇ = −𝑘𝑥/𝑚 + 𝑐𝑥3/𝑚 

(b) Sketch a phase portrait of the system for both the hard and soft springs. You can use 
the fact that the linearized centers are also nonlinear centers. (This follows from energy 
considerations.) 

Solution: Case 1. Hard spring (𝑐 < 0): One critical point at (0, 0) 

The Jacobian 𝐽(𝑥, 𝑦) = [ 
0 

0
1]−𝑘/𝑚 + 3𝑐𝑥2/𝑚 

𝐽(0, 0) = [ 
0 1

0] ⇒ 𝜆 = 𝑖√𝑘/𝑚. So we have a linearized center. The problem−𝑘/𝑚
statement tells us that this is also a nonlinear center. 

Case 2. Soft spring (𝑐 > 0): We have the following critical points: (0, 0), (±√𝑘/𝑐, 0). 
(0, 0): 𝐽(0, 0) is the same as for the hard spring. This is a linearized center. The problem 
statement says it is also a nonlinear center. 

(±√𝑘/𝑐, 0): 𝐽(±√𝑘/𝑐, 0) = [ 
0 

0
1] (same for both). Thus we have linearized saddles 2𝑘/𝑚 

and, by structural stability, nonlinear saddles. (You should find the eigenvectors to aid in 
sketching the phase portrait.) 
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Soft spring: 𝑐 > 0 Hard spring: 𝑐 < 0 

(c) (Challenge! For anyone who is interested. This is not part of the ES.1803 syllabus.) 
Find equations for the trajectories of the system. 
Solution: We use a standard trick to get trajectories: 

𝑑𝑦 𝑦 ̇ −𝑘𝑥 + 𝑐𝑥3 

.𝑑𝑥 
= 𝑥̇ = 𝑚𝑦 

This is separable: 𝑚𝑦 𝑑𝑦 = (−𝑘𝑥 + 𝑐𝑥3) 𝑑𝑦. Integrating we get 

𝑚𝑦2 
+ 

𝑘𝑥 
2 

2 
− 

𝑐𝑥4 
= 𝐸⏟ .⏟2 4⏟⏟⏟⏟⏟ total energy = constant 

kinetic energy potential energy 

If 𝑐 < 0 (hard spring), then both energy terms on the right are positive, so 𝑥 and 𝑦 must be 
bounded. Then, for fixed 𝑥, there are at most two points on the trajectory. Thus we must 
have closed trajectories. 
If 𝑐 > 0 (soft spring), then, we can define 𝑤1 and 𝑤2 by 

𝑘𝑥 
2

2 

− 
𝑐𝑥4 

𝑤2(𝑦) = 𝐸 − 
𝑚𝑦2

𝑤1(𝑥) = 4 
, 2 

Using 𝑘 > 0, 𝑚 > 0, we have the graphs of 𝑤1, 𝑤2 given below. Using the same graphical 
ideas as in the proof in the Topic 30 notes that the Volterra predator-prey equation has 
closed trajectories, this shows the phase plane for the soft spring is as shown above. 
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Different energy levels correspond to different types of trajectories. At the unstable equi-
librium we compute 𝐸 = 𝑘

4𝑐
2 . We have the following correspondence between energy level 

and trajector (using the labels on the soft-spring phase portrait above): 
𝐸 = 0: Stable equilibrium. 

0 < 𝐸 < 
𝑘2 

Trajectories 1. 4𝑐 
: 

𝑘2
𝐸 = Unstable equilibrium, or a trajectory going asymptotically to or from the unstable 4𝑐 

: 
equilibrium. 
𝑘
4𝑐

2 

< 𝐸: Trajectories 2. 

𝐸 < 
𝑘
4𝑐

2 

(including 𝐸 < 0): Trajectories 3 

Problem 31.2. The damped nonlinear spring has equation 

𝑚𝑥̈ = −𝑘𝑥 + 𝑐𝑥3 − 𝑏𝑥.̇ 

(a) Convert it to a system of first-order equations. 
(b) Sketch a phase portrait for both the hard and soft springs. 
Solution: (a) The system is 

𝑥̇ = 𝑦 

𝑦 ̇ = −𝑘𝑥/𝑚 + 𝑐𝑥3/𝑚 − 𝑏𝑦/𝑚 

(b) Hard spring (𝑐 < 0): One critical point at (0, 0) 

0 1 −𝑏 ± 
√

𝑏2 − 4𝑘𝑚 𝐽(0, 0) = [−𝑘/𝑚 −𝑏/𝑚] ⇒ 𝜆 = . So we have 3 possiblities: 2𝑚 

(i) underdamped = linearized spiral sink; 
(ii) overdamped = linearized nodal sink; 
(iii) critically damped = defective sink. 
In all cases we have a nonlinear sink. In case (iii), because it’s not structurally stable, we 
would need to do more work to see what type of nonlinear sink we have. 
Soft spring (𝑐 > 0): We have the following critical points: (0, 0), (±√𝑘/𝑐, 0). 
(0, 0): linearized sink (spiral, nodal or defective), so we have a nonlinear sink. 
(±√𝑘/𝑐, 0): linearized saddles, so we have nonlinear saddles. 
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