
ES.1803 Problem Section 2, Spring 2024 Solutions 

⎧6 for 0 ≤ 𝑡 < 1 {
Problem 3.1. Solve the DE 𝑥′ + 2𝑥 = 𝑓(𝑡), 𝑥(0) = 0, where 𝑓(𝑡) = 0 for 1 ≤ 𝑡 < 2 ⎨{⎩6 for 2 ≤ 𝑡. 

Solution: First we solve the general cases (you can and should solve these by memory and 
inpsection). 
IVP 1: 𝑥′ + 2𝑥 = 0, 𝑥(𝑡0) = 𝑏 ⇒ 𝑥(𝑡) = 𝑏𝑒−2(𝑡−𝑡0). 
IVP 2: 𝑥′ + 2𝑥 = 6, 𝑥(𝑡0) = 𝑏 ⇒ 𝑥(𝑡) = 3 + (𝑏 − 3)𝑒−2(𝑡−𝑡0). 
For our problem: 
Case 0 ≤ 𝑡 < 1: DE: 𝑥′ + 2𝑥 = 6, 𝑥(0) = 0. 
So, using IVP 2, 𝑥(𝑡) = 3 − 3𝑒−2𝑡. For the next case: 𝑥1 = 𝑥(1) = 3(1 − 𝑒−2). 
Case 1 ≤ 𝑡 < 2: DE: 𝑥′ + 2𝑥 = 0, 𝑥(1) = 𝑥1. 
So, using IVP 1, 𝑥(𝑡) = 𝑥1𝑒−2(𝑡−1). For the next case: 𝑥2 = 𝑥(2) = 𝑥1𝑒−2 = 3(𝑒−2 − 𝑒−4). 
Case 2 ≤ 𝑡: DE: 𝑥′ + 2𝑥 = 6, 𝑥(2) = 𝑥2. 

𝑥(𝑡) = 3 + (𝑥2 − 3)𝑒−2(𝑡−2)So, using IVP 2, . 
Putting the cases together: 

⎧3(1 − 𝑒−2𝑡) for 0 ≤ 𝑡 < 1 {
𝑥(𝑡) = 𝑥1𝑒−2(𝑡−1) = 3(1 − 𝑒−2)𝑒−2(𝑡−1) for 1 ≤ 𝑡 < 2 ⎨{3 + (𝑥2 − 3)𝑒−2(𝑡−2)⎩ = 3 + 3(−1 + 𝑒−2 − 𝑒−4)𝑒−2(𝑡−2) for 2 ≤ 𝑡. 

Problem 4.2. (Polar coordinates) 
Write 𝑧 = −1 + 

√
3𝑖 in polar form. 

Solution: Easily: 

|𝑧| = 2, and Arg(𝑧) = 𝜙 = tan−1(−
√

3/1) = 2𝜋/3 . 

𝑧 = 2𝑒𝑖𝜙 = 2𝑒𝑖2𝜋/3.(We know 𝜙 is in the 2nd quadrant.) So, 

Problem 4.3. (Trig triangle) 
Draw and label the triangle relating rectangular with polar coordinates. 
Solution: 

x (real axis)

y (imaginary axis)
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Problem 4.4. (Roots) 
Find all fifth roots of -2. Give them in polar form. Draw a figure showing the roots in the 
complex plane. 
Solution: We start by writing −2 in polar form, being sure to include all values of the 
argument: 

−2 = 2𝑒𝑖𝜋+𝑖2𝑛𝜋. 
Raising this to the power 1/5 gives 

(−2)1/5 = 21/5𝑒𝑖𝜋/5+𝑖2𝑛𝜋/5. 

Thus the 5 unique roots are: 

𝑧1 = 21/5𝑒𝑖𝜋/5, 𝑧2 = 21/5𝑒𝑖3𝜋/5, 𝑧3 = 21/5𝑒𝑖5𝜋/5, 𝑧4 = 21/5𝑒𝑖7𝜋/5, 𝑧5 = 21/5𝑒𝑖9𝜋/5. 

The only one of these that simplifies is 𝑧3 = 21/5𝑒𝑖5𝜋/5 = −21/5. 
The figure below shows −2 and its fifth roots. Notice they are equally spaced around a 
circle of radius 21/5. 
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Problem 4.5. (Complex replacement or complexification) 

Compute 𝐼 = ∫ 𝑒4𝑥 cos(3𝑥) 𝑑𝑥 using complex techniques. 

Solution: Replacing cos(3𝑥) by 𝑒𝑖3𝑥 we have: 𝐼𝑐 = ∫ 𝑒(4+3𝑖)𝑥, 𝐼 = Re(𝐼𝑐). 

𝑒(4+3𝑖)𝑥 

Integrating: 𝐼𝑐 = 4 + 3𝑖 . 

Polar form: 4 + 3𝑖 = 5𝑒𝑖𝜙, where 𝜙 = Arg(4 + 3𝑖) = tan−1(3/4) in Q1. 
𝑒4𝑥 

Thus, 𝐼𝑐 = 5 
𝑒𝑖(4𝑥−𝜙). This implies 

𝑒4𝑥 

𝐼 = Re(𝐼𝑐) = cos(3𝑥 − 𝜙). 5 

Problem 4.6. Using the polar form, explain why |𝑧𝑛| = |𝑧|𝑛 and arg(𝑧𝑛) = 𝑛 arg(𝑧) for
𝑛 a positive integer. 
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Solution: In polar coordinates we have 𝑧 = 𝑟𝑒𝑖𝜃. So, 𝑧𝑛 = 𝑟𝑛𝑒𝑖𝑛𝜃, i.e., |𝑧𝑛| = 𝑟𝑛 = |𝑧|𝑛 

and arg(𝑧𝑛) = 𝑛𝜃 = 𝑛 arg(𝑧). ■ 

Another way to say this is: 
Magnitudes multiply, so |𝑧𝑛| = |𝑧 ⋅ 𝑧 ⋯ 𝑧| = |𝑧| ⋅ |𝑧| ⋯ |𝑧| = |𝑧|𝑛. 
Arguments add, so arg(𝑧𝑛) = arg(𝑧 ⋅ 𝑧 ⋯ 𝑧) = arg(𝑧) + arg(𝑧) + ⋯ + arg(𝑧) = 𝑛 arg 𝑧. 

Problem 4.7. (a) Write cos(𝜋𝑡) − 
√

3 sin(𝜋𝑡) in the form 𝐴 cos(𝜔𝑡 − 𝜙). 
(b) Write 5 cos (3𝑡 + 3𝜋

4 ) in the form 𝑎 cos(𝜔𝑡) + 𝑏 sin(𝜔𝑡). 
(In each case, begin by drawing a right triangle with sides 𝑎 and 𝑏, angle 𝜙, hypotenuse 𝐴.) 

Solution: This problem uses the identity 

𝑎 cos(𝜔𝑡) + 𝑏 sin(𝜔𝑡) = 𝐴 cos(𝜔𝑡 − 𝜙) 

in which (𝐴, 𝜙) are the polar coordinates of the coefficients (𝑎, 𝑏). 

(a) We have the point (𝑎, 𝑏) = (1, −
√

3) (in the 4th quadrant). So, 𝐴 = 
√1 + 3 = 2 and

𝜙 = tan−1(−
√

3) = −𝜋/3. Thus, 

cos(𝜋𝑡) − 
√

3 sin(𝜋𝑡) = 2 cos (𝜋𝑡 + 
𝜋
3 ) . 

(b) We have 𝐴 = 5 and 𝜙 = 3𝜋/4. So, 

𝑎 = 5 cos (−3𝜋
4 

) = −√5
2

, 𝑏 = 5 sin (−3𝜋
4 

) = −√5
2

. 

Thus, 5 cos (3𝑡 + 
3𝜋
4 

) = −√5
2 

cos(3𝑡) − √5
2 

sin(3𝑡). 

Extra problems if time. 

Problem 4.8. (Polar coordinates) 
We know −1 + 

√
3 𝑖 = 2𝑒𝑖2𝜋/3. Use this to answer the following questions. 

(a) Compute the product (−1 + 
√

3𝑖)(𝑎 + 𝑏𝑖) (where 𝑎, 𝑏 are real). 
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Describe geometrically what multiplying by −1 + 
√

3𝑖 does. 
Solution: (−1 + 

√
3𝑖)(𝑎 + 𝑏𝑖) = (−𝑎 − 

√
3𝑏) + (−𝑏 + 

√
3𝑎)𝑖. 

In polar coordinates 

(−1 + 
√

3𝑖)𝑟𝑒𝑖𝜃 = 2𝑒2𝜋/3𝑟𝑒𝑖𝜃 = 2𝑟𝑒𝑖(𝜃+2𝜋/3). 

Multiplying 𝑧 = 𝑎 + 𝑏𝑖 by this number multiplies the magnitude of 𝑧 by 2, and increases 
the argument by 2𝜋/3, i.e., it expands by a factor of 2 and rotates by 120∘. 
(b) What are the polar coordinates of (−1 + 

√
3𝑖)(𝑎 + 𝑏𝑖) in terms of the polar coordinates 

of 𝑎 + 𝑏𝑖 = 𝑟𝑒𝑖𝜃? 

Solution: See answer to Part (a): The magnitude is 2𝑟 and the argument is 𝜃 + 2𝜋/3. 
(c) Describe the sequence of powers of −1 + 

√
3𝑖, positive and negative. 

Solution: The powers of −1 + 
√

3𝑖 spiral out, rotating counterclockwise by 120∘ each time 
and growing by a factor of 2. Successive negative powers rotate clockwise by 120∘ and shrink 
by a factor of 1/2. 

1Problem 4.9. Compute −2 + 3𝑖 in polar form. Convert the denominator to polar form 

first. Be sure to describe the polar angle precisely. 
Solution: In polar form −2 + 3𝑖 = 

√
13𝑒𝑖𝜃, where 𝜃 = arg(−2 + 3𝑖) = tan−1(−3/2) in the 

second quadrant.
1 √1

13𝑒−𝑖𝜃 Therefore, = = .−2 + 3𝑖 √
13𝑒
1 

𝑖𝜃 

Problem 4.10. Make up and solve some simple algebra problems involving addition, 
subtraction, division, magnitude, complex conjugation. 
Solution: Provided by you! 

Problem 4.11. Write 3𝑒𝑖𝜋/6 in rectangular coordinates. 

Solution: By Euler’s formula: 3𝑒𝑖𝜋/6 = 3 cos(𝜋/6) + 3𝑖 sin(𝜋/6) = 3
√

3/2 + 𝑖3/2. 

Problem 4.12. Find a formula for cos(3𝜃) in terms of cos(𝜃) and sin(𝜃). 
Solution: First note, cos(3𝜃) = Re(𝑒3𝑖𝜃). We know, 

𝑒3𝑖𝜃 = (cos(𝜃) + 𝑖 sin(𝜃))3 = cos3(𝜃) + 3𝑖 cos2(𝜃) sin(𝜃) − 3 cos(𝜃) sin2(𝜃) − 𝑖 sin3(𝜃) 

Taking the real part, we have cos(3𝜃) = cos3(𝜃) − 3 cos(𝜃) sin2(𝜃). 

Problem 4.13. The point of this problem is to help you distinguish between taking the 
real part of a function and finding which members of a family of functions are real-valued. 
(a) Show the inverse Euler formulas are true: 

cos(𝑡) = (𝑒𝑖𝑡 + 𝑒−𝑖𝑡)/2, sin(𝑡) = (𝑒𝑖𝑡 − 𝑒−𝑖𝑡)/2𝑖. 



5 ES.1803 Problem Section 2, Spring 2024 Solutions 

Solution: Use Euler’s formula: 

𝑒𝑖𝑡 = cos(𝑡) + 𝑖 sin(𝑡)
𝑒−𝑖𝑡 = cos(𝑡) − 𝑖 sin(𝑡) 

Adding these two formulas gives 𝑒𝑖𝑡 + 𝑒−𝑖𝑡 = 2 cos(𝑡). Dividing by 2 then gives the inverse 
Euler formula for cos(𝑡). 
Likewise, subtracting the two formulas gives 𝑒𝑖𝑡 − 𝑒−𝑖𝑡 = 2𝑖 sin(𝑡). Now, dividing by 2𝑖 gives 
the formula for sin(𝑡). 
(b) Find all the real-valued functions of the form 𝑐1̃ 𝑒𝑖𝑡 +𝑐2̃ 𝑒−𝑖𝑡, where 𝑐1̃ and 𝑐2̃ are complex 
constants. 
(ii) Using Euler’s formula we know that 

𝑐1̃ 𝑒𝑖𝑡 + 𝑐2̃ 𝑒−𝑖𝑡 = (𝑐1̃ + 𝑐2̃ ) cos(𝑡) + 𝑖(𝑐1̃ − 𝑐2̃ ) sin(𝑡) 

If this is real-valued then the coefficients of cos(𝑡) and sin(𝑡) must be real: 
𝑐1̃ + 𝑐2̃ real implies Im(𝑐2̃ ) = − Im(𝑐2̃ ). 
𝑖(𝑐1̃ − 𝑐2̃ ) real implies Re(𝑐2̃ ) = Re(𝑐2̃ ). 
Thus 𝑐1̃ and 𝑐2̃ are complex conjugates, say 𝑐1̃ = 𝑎 − 𝑖𝑏 and 𝑐2̃ = 𝑎 + 𝑖𝑏. Then 

𝑐1̃ 𝑒𝑖𝑡 + 𝑐2̃ 𝑒−𝑖𝑡 = 2𝑎 cos(𝑡) + 2𝑏 sin(𝑡) 

Changing notation slightly, the answer is 𝑥(𝑡) = 𝑎 cos(𝑡) + 𝑏 sin(𝑡). 

𝑐𝑒(2+3𝑖)𝑡 Problem 4.14. Find all the real-valued functions of the form 𝑥 = ̃ . 
Solution: Let 𝑐 ̃ = 𝑎 + 𝑖𝑏. Expanding 𝑥 we get 

𝑥(𝑡) = 𝑒2𝑡(𝑎 + 𝑖𝑏)(cos(3𝑡) + 𝑖 sin(3𝑡)) = 𝑒2𝑡(𝑎 cos(3𝑡) − 𝑏 sin(3𝑡) + 𝑖(𝑎 sin(3𝑡) + 𝑏 cos(3𝑡))) 

It’s clear that the imaginary part can only be 0 if 𝑎 = 𝑏 = 0. So the only such real-valued 
function is 𝑥(𝑡) = 0. 

Problem 4.15. Find the 3 cube roots of 1 by locating them on the unit circle and using 
basic trigonometry. 
Solution: We know one cube root is 1. This is on the unit circle and the three roots are 
evenly spaced around the circle. So the other two are at 𝑒2𝜋𝑖/3 and 𝑒4𝜋𝑖/3. Since 2𝜋/3 = 120∘ 

and 4𝜋/3 = 240∘, we can use our knowledge of 30, 60, 90 triangles to write the roots as 

1, 𝑒2𝜋𝑖/3 = 
−1 + 

√
3𝑖, 𝑒4𝜋𝑖/3 = 

−1 − 
√

3𝑖 
2 2 

The figure below shows the three cube roots of 1. 
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x

y

1

(−1 +
√
3i)/2

(−1−
√
3i)/2

Cube roots of 1 

Problem 4.16. Express in the form 𝑎 + 𝑏𝑖 the 6 sixth roots of 1. 
Solution: In polar form 1 = 𝑒𝑖2𝜋𝑘, so 

11/6 = 𝑒𝑖2𝜋𝑘/6 = 𝑒𝑖⋅0, 𝑒𝑖𝜋/3, 𝑒𝑖2𝜋/3, 𝑒𝑖3𝜋/3, 𝑒𝑖5𝜋/3, 𝑒𝑖5𝜋/3 

√
3 

√
3 

√
3 1

√
3= 1, 1

2 + 𝑖 2 
, −1

2 + 𝑖 2 
, −1, −1

2 − 𝑖 2 − 𝑖 2 , 2 

Problem 4.17. Use Euler’s formula to derive the trig addition formulas for sin and cos. 
= 𝑒𝑖(𝛼+𝛽) Solution: Use 𝑒𝑖𝛼𝑒𝑖𝛽 . 

𝑒𝑖𝛼𝑒𝑖𝛽 = (cos(𝛼) + 𝑖 sin(𝛼))(cos(𝛽) + 𝑖 sin(𝛽)) 

= (cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽)) + 𝑖(sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽)) 

𝑒𝑖(𝛼+𝛽) = cos(𝛼 + 𝛽) + 𝑖 sin(𝛼 + 𝛽) 

Equating the two expressions above, we have: 

(cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽)) + 𝑖(sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽)) = cos(𝛼 + 𝛽) + 𝑖 sin(𝛼 + 𝛽). 

Equating the real and imaginary parts, we get the trig addition formulas: 

cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽) = cos(𝛼 + 𝛽) 

sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽) = sin(𝛼 + 𝛽). 

Problem 4.18. Suppose 𝑧𝑛 = 1. What must |𝑧| be? What are the possible values of 
arg(𝑧), if 𝑧𝑛 = 1? 

Solution: |𝑧|𝑛 = 1, and |𝑧| > 0, so |𝑧| must be 1. 
We must have 𝑛 arg(𝑧) is a multiple of 2𝜋. So, arg(𝑧) = 2𝑚𝜋/𝑛 for some integer 𝑛. 

Problem 4.19. Find the cube roots of 𝑖. 
Solution: We know that 𝑖 = 𝑒𝑖𝜋/2+2𝑚𝜋𝑖, so the third roots are of the form 𝑒𝑖𝜋/6+2𝑚𝜋𝑖/3. 
The three unique roots are 

𝑒𝑖9𝜋/6 𝑒𝑖𝜋/6 = (
√

3 + 𝑖)/2, 𝑒𝑖5𝜋/6 = (−
√

3 + 𝑖)/2, = −𝑖. 
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The figure below shows the three cube roots of 𝑖. 

x

y

i

(
√
3 + i)/2(−

√
3 + i)/2

−i

Cube roots of 𝑖 

Problem 4.20. By using (𝑒𝑖𝑡)4 = 𝑒4𝑖𝑡 and Euler’s formula, find an expression for sin(4𝑡)
in terms of powers of cos(𝑡) and sin(𝑡), 
Solution: Compute 

𝑒4𝑖𝑡 = (𝑒𝑖𝑡)4 

= (cos(𝑡) + 𝑖 sin(𝑡))4 

= cos4(𝑡) + 4𝑖 cos3(𝑡) sin(𝑡) − 6 cos2(𝑡) sin2(𝑡) − 4𝑖 cos(𝑡) sin3(𝑡) + sin4(𝑡) 

= (cos4(𝑡) − 6 cos2(𝑡) sin2(𝑡) + sin4(𝑡)) + 𝑖 (4 cos3(𝑡) sin(𝑡) − 4 cos(𝑡) sin3(𝑡)) 

So, sin(4𝑡) = Im(𝑒4𝑖𝑡) = 4 cos3(𝑡) sin(𝑡) − 4 cos(𝑡) sin3(𝑡). 

Problem 4.21. Trajectories of 𝑒(𝑎+𝑏𝑖)𝑡 can vary a lot, depending upon the value of the 
complex number 𝑎 + 𝑏𝑖. The “Complex Exponential” Mathlet shows this clearly. Invoke this 
applet if you can: https://mathlets.org/mathlets/complex-exponential/. You can 
use it to gain insight into the following questions. 
(a) Sketch the trajectory of the complex-valued function 𝑒(−1+2𝜋𝑖)𝑡, and the graphs of its real 
and imaginary parts. 
Solution: This is a spiral moving towards the origin and turning counterclockwise. The 
real part is 𝑒−𝑡 cos(2𝜋𝑡): a “damped sinusoid” with value 1 at 𝑡 = 0. The imaginary part is 
𝑒−𝑡 sin(2𝜋𝑡): a damped sinusoid with value 0 at 𝑡 = 0 and positive derivative there. 

x

y

1
t

x, y

1

1 2

x(t)

y(t)

Left: Spiral in to origin. Right: Graphs of 𝑥(𝑡), 𝑦(𝑡). 

https://mathlets.org/mathlets/complex-exponential/
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(b) For each of the following shapes, decide on all the values of 𝑎+𝑏𝑖 for which the trajectory 
of 𝑒(𝑎+𝑏𝑖)𝑡 has this shape. 
(i) A circle centered at 0, traversed counterclockwise. What circles are possible? 

(ii) A circle centered at 0, traversed clockwise. 
(iii) A ray (straight half line) heading away from the origin. 
(iv) A curve heading to zero as 𝑡 → ∞. 
Solution: This will all depend upon Euler’s formula 

𝑒(𝑎+𝑏𝑖)𝑡 = 𝑒𝑎𝑡(cos(𝑏𝑡) + 𝑖 sin(𝑏𝑡)) 

Notice that |𝑒(𝑎+𝑏𝑖)𝑡| = 𝑒𝑎𝑡 and Arg(𝑒(𝑎+𝑏𝑖)𝑡) = 𝑏𝑡. 
(i) This can only happen if the magnitude is constant: so 𝑎 = 0. To go counterclockwise, 
we must have 𝑏 > 0. Ans: 𝑏𝑖, 𝑏 > 0: the “positive imaginary axis.” The circle must be the 
unit circle. 
(ii) Again 𝑎 = 0, but now 𝑏 < 0: the “negative imaginary axis.” 

(iii) Now 𝑏 must be zero. For the magnitude to be increasing, we must have 𝑎 > 0. Answer: 
real 𝑎, 𝑎 > 0: the postive real axis. 
(iv) For this we must have 𝑎 < 0. 𝑏 can be anything. So: 𝑎 + 𝑏𝑖 with 𝑎 < 0: the left half 
plane. 

Problem 4.22. Write cos(2𝑡) + sin(2𝑡) in the form 𝐴 cos(𝜔𝑡 − 𝜙). 
Solution: The coefficients are (𝑎, 𝑏) = (1, 1), which have polar coordinates 𝐴 = 

√
2,

𝜋 𝜙 = 4 
. So, cos(2𝑡) + sin(2𝑡) = 

√
2 cos (2𝑡 − 

𝜋
4 ). 
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