ES.1803 Problem Section 8, Spring 2024 Solutions

Problem 17.1. (a) Let $A = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix}$. Solve $\mathbf{x}' = A\mathbf{x}$.

Solution: Characteristic equation: $|A - \lambda I| = \begin{vmatrix} 4 - \lambda & -3 \\ 6 & -7 - \lambda \end{vmatrix} = \lambda^2 + 3\lambda - 10 = 0$. So the eigenvalues are $\lambda = 2, -5$.

Basic Eigenvectors (basis of $\text{Null}(A - \lambda I)$):

$$\lambda = 2; \quad A - \lambda I = \begin{bmatrix} 2 & -3 \\ 6 & -9 \end{bmatrix}. \text{ Take } \mathbf{v} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}.$$
$$\lambda = -5; \quad A - \lambda I = \begin{bmatrix} 9 & -3 \\ 6 & -2 \end{bmatrix}. \text{ Take } \mathbf{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

$$\begin{split} \text{Two (modal) solutions:} \quad \mathbf{x_1}(t) &= e^{2t} \begin{bmatrix} 3\\ 2 \end{bmatrix}, \quad \mathbf{x_2}(t) = e^{-5t} \begin{bmatrix} 1\\ 3 \end{bmatrix}. \\ \text{General solution:} \quad \mathbf{x}(t) &= c_1 \mathbf{x_1}(t) + c_2 \mathbf{x_2}(t). \end{split}$$

(b) What is the solution to $\mathbf{x}' = A\mathbf{x}$ with $\mathbf{x}(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$.

Solution: We use the initial condition to find values for the parameters c_1, c_2

$$\mathbf{x}(0) = c_1 \begin{bmatrix} 3\\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 1\\ 3 \end{bmatrix} = \begin{bmatrix} 2\\ 0 \end{bmatrix}.$$

In matrix form we have $\begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. So,

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \frac{1}{7} \begin{bmatrix} 3 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 6/7 \\ -4/7 \end{bmatrix}.$$

Thus, $\mathbf{x}(t) = \frac{6}{7}e^{2t}\begin{bmatrix}3\\2\end{bmatrix} - \frac{4}{7}e^{-5t}\begin{bmatrix}1\\3\end{bmatrix}$.

(c) Decouple the system in Part (a). That is, make a change of variables that converts the system to a decoupled one. Write the system in the new variables.

Solution: The decoupling change of variables is $\begin{bmatrix} x \\ y \end{bmatrix} = S \begin{bmatrix} u \\ v \end{bmatrix}$, where S is the matrix of eigenvectors. So,

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} \quad \Leftrightarrow \quad \begin{cases} x &= 3u + v \\ y &= 2u + 3v \end{cases}$$

In these variables the system is $\begin{bmatrix} u'\\v' \end{bmatrix} = \Lambda \begin{bmatrix} u\\v \end{bmatrix}$, where Λ is the diagonal matrix of eigenvalues. That is,

$$\begin{bmatrix} u'\\v' \end{bmatrix} = \begin{bmatrix} 2 & 0\\0 & -5 \end{bmatrix} \begin{bmatrix} u\\v \end{bmatrix} \quad \Leftrightarrow \quad \begin{cases} u' &= 2u\\v' &= -5u \end{cases}$$

Problem 16.2. (a) Find the eigenvalues and basic eigenvectors of $A = \begin{bmatrix} 3 & 1 & -3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix}$.

Solution: Characteristic equation: $\begin{vmatrix} 3-\lambda & 1 & -3\\ 0 & 2-\lambda & 3\\ 0 & 0 & 3-\lambda \end{vmatrix} = (\lambda - 3)(\lambda - 2)(\lambda - 3) = 0:$

eigenvalues are 3, 3, 2. (Since this is a triangular matrix, you should be able to get these values by inspection.)

The eigenspace corresponding to an eigenvalue λ is Null $(A - \lambda I)$. We'll need row reduction to find this for each λ .

$$\lambda = 3; \quad (A - 3I) = \begin{bmatrix} 0 & 1 & -3 \\ 0 & -1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{\operatorname{Row}_2 = \operatorname{Row}_2 + \operatorname{Row}_1} \begin{bmatrix} 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

There are two free variables (first and third). We use our usual algorithm and notation to find a basis for the null space:

$$\begin{bmatrix} 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{matrix} x_1 & x_2 & x_3 \\ 1 & 0 & 0 \\ 0 & 3 & 1 \end{matrix}$$

Our two basis vectors are: $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\3\\1 \end{bmatrix}$. These are two independent eigenvectors with

eigenvalue 3.

For $\lambda = 2$, we won't show the row reduction steps.

$$(A-2I) = \begin{bmatrix} 1 & 1 & -3 \\ 0 & 0 & 3 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

The second column is free. Again, we make our usual computation to find a basis.

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} x_1 & x_2 & x_3 \\ -1 & 1 & 0 \end{bmatrix}$$

Our basic eigenvector is $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$

(b) Write A in diagonalized form.

Solution: Let
$$\Lambda = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 (diagonal matrix of eigenvalues).

Let
$$S = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 3 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 (matrix of eigenvectors)

Note: The eigenvectors in S must be in the same order as the eigenvalues in Λ . We know $A = S\Lambda S^{-1}$. This is the diagonalized form for A. (c) Compute A^5 .

Solution:
$$A^5 = S\Lambda^5 S^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 3 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 243 & 0 & 0 \\ 0 & 243 & 0 \\ 0 & 0 & 32 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 3 & -1 \\ 0 & 1 & 0 \end{bmatrix}^{-1}$$

Problem 15.3. (a) Use row reduction to find the inverse of the matrix $A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix}$.

(b) Use the record of the row operations to compute the determinant of A

(a) Solution: Augment the A by the identity and then use row operations to reduce the A to the identity.

$$\begin{bmatrix} 6 & 5 & | & 1 & 0 \\ 1 & 2 & | & 0 & 1 \end{bmatrix} \xrightarrow{\text{swap } R_1 \text{ and } R_2} \begin{bmatrix} 1 & 2 & | & 0 & 1 \\ 6 & 5 & | & 1 & 0 \end{bmatrix}$$

$$\xrightarrow{R_2 - 6R_1} \begin{bmatrix} 1 & 2 & | & 0 & 1 \\ 0 & -7 & | & 1 & -6 \end{bmatrix}$$

$$\xrightarrow{\text{scale } R_2 \text{ by } -1/7} \begin{bmatrix} 1 & 2 & | & 0 & 1 \\ 0 & 1 & | & -1/7 & 6/7 \end{bmatrix}$$

$$\xrightarrow{R_1 - 2R_2} \begin{bmatrix} 1 & 0 & | & 2/7 & -5/7 \\ 0 & 1 & | & -1/7 & 6/7 \end{bmatrix}$$

So, $A^{-1} = \begin{bmatrix} 2/7 & -5/7 \\ -1/7 & 6/7 \end{bmatrix}$

(b) The only operations that change the determinant are swapping and scaling. In this case, there is one swap and one scale by -1/7. The row reduction starts with A and ends with I, so

$$1 = \det(I) = (-1/7) \cdot (-1) \cdot \det(A) \Rightarrow \boxed{\det(A) = 7}$$

Problem 16.4. Suppose $A = \begin{bmatrix} a & b & c \\ 0 & 2 & e \\ 0 & 0 & 3 \end{bmatrix}$.

(a) What are the eigenvalues of A?

Solution: For an upper triangular matrix the eigenvalues are the diagonal entries: a, 2, 3.

(b) For what value (or values) of a, b, c, e is A singular (non-invertible)?

Solution: det(A) = product of eigenvalues. So A is singular when <math>a = 0. The parameters b, c, e can take any values.

(c) What is the minimum rank of A (as a, b, c, e vary)? What's the maximum?

Solution: When a = 0, the null space is dimension 1, so rank =2.

When $a \neq 0$, A is invertible, so has rank = 3.

(d) Suppose a = -5. In the system $\mathbf{x}' = A\mathbf{x}$, is the equilibrium at the origin stable or unstable.

Solution: The two positive eigenvalues imply the system is unstable.

Problem 16.5. Suppose that $A = S \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} S^{-1}$.

(a) What are the eigenvalues of A?

Solution: The eigenvalues are the same as the diagonal matrix, i.e., 1, 2, 3.

(b) Express A^2 and A^{-1} in terms of S.

Solution:
$$A^2 = S \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix} S^{-1}; \quad A^{-1} = S \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix} S^{-1}.$$

(c) What would I need to know about S in order to write down the most rapidly growing exponential solution to $\mathbf{x}' = A\mathbf{x}$?

Solution: You need to know the eigenvector that goes with the eigenvalue 3. That is, you need to know the third column of S.

(Complex roots) Solve $\mathbf{x}' = \begin{bmatrix} 7 & -5 \\ 4 & 3 \end{bmatrix} \mathbf{x}$ for the general real-valued Problem 17.6.

solution.

Solution: Coefficient matrix: $A = \begin{bmatrix} 7 & -5 \\ 4 & 3 \end{bmatrix}$. Characteristic equation: $\det(A - \lambda I) = \begin{vmatrix} 7 - \lambda & -5 \\ 4 & 3 - \lambda \end{vmatrix} = \lambda^2 - 10\lambda + 41 = 0.$

Eigenvalues: $\lambda = 5 \pm 4i$.

Basic eigenvectors (basis of Null $(A - \lambda I)$): As usual, for the 2 case, we can find eigenvectors by inspection without row reduction.

$$\lambda = 5 + 4i: \quad A - \lambda I = \begin{bmatrix} 2 - 4i & -5\\ 4 & -2 - 4i \end{bmatrix} \mathbf{v} = \begin{bmatrix} 0\\ 0 \end{bmatrix}. \text{ Basic eigenvector: } \mathbf{v} = \begin{bmatrix} 5\\ 2 - 4i \end{bmatrix}.$$

Complex solution:

$$\mathbf{z}(t) = e^{(5+4i)t} \begin{bmatrix} 5\\ 2-4i \end{bmatrix} = e^{5t} \begin{bmatrix} 5\cos(4t) + i5\sin(4t)\\ 2\cos(4t) + 4\sin(4t) + i(-4\cos(4t) + 2\sin(4t)) \end{bmatrix}.$$

Both real and imaginary parts are solutions to the DE:

$$\mathbf{x_1}(t) = e^{5t} \begin{bmatrix} 5\cos(4t) \\ 2\cos(4t) + 4\sin(4t) \end{bmatrix}, \quad \mathbf{x_2}(t) = e^{5t} \begin{bmatrix} 5\sin(4t) \\ -4\cos(4t) + 2\sin(4t) \end{bmatrix}$$

General real-valued solution (by superposition): $\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t)$.

Extra problems if time.

Problem 17.7. Solve x' = -3x + y, y' = 2x - 2y. Solution: The coefficient matrix is $A = \begin{bmatrix} -3 & 1 \\ 2 & -2 \end{bmatrix}$.

Characteristic equation: $\lambda^2 + 5\lambda + 4 = 0$. This has roots $\lambda = -1, -4$.

Basic eigenvectors (basis of $\text{Null}(A - \lambda I)$): As usual, for the 2 case, we can find eigenvectors by inspection without row reduction.

$$\lambda = -1: \quad A - \lambda I = \begin{bmatrix} -2 & 1 \\ 2 & -1 \end{bmatrix}. \text{ Basic eigenvector} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$\lambda = -4: \quad A - \lambda I = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}. \text{ Basic eigenvector} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Modal solutions: $\mathbf{x_1}(t) = e^{-t} \begin{bmatrix} 1\\ 2 \end{bmatrix}$, $\mathbf{x_2}(t) = e^{-4t} \begin{bmatrix} 1\\ -1 \end{bmatrix}$.

 $\text{General solution } \mathbf{x}(\mathbf{t}) = c_1 \mathbf{x_1}(t) + c_2 \mathbf{x_2}(t) = c_1 e^{-t} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c_2 e^{-4t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$

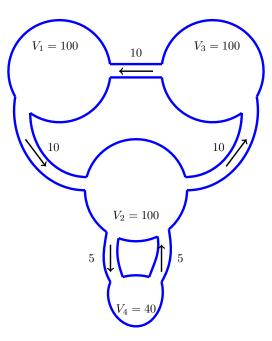
Problem 16.8. (b) Find the eigenvalues and basic eigenvectors of $A = \begin{bmatrix} -3 & 4 \\ 2 & -5 \end{bmatrix}$.

Solution: Characteristic equation: $\begin{vmatrix} -3 - \lambda & 4 \\ 2 & -5 - \lambda \end{vmatrix} = \lambda^2 + 8\lambda + 7 = 0 \Rightarrow \lambda = -1, -7.$

Basic eigenvectors for the eigenvalue λ are a basis of Null $(A - \lambda I)$. That is, basic solutions to $(A - \lambda I)\mathbf{v} = 0$. For the 2 case, we can find eigenvectors by inspection without row reduction.

$$\begin{split} \lambda_1 &= -1; \quad (A - \lambda I) = \begin{bmatrix} -2 & 4 \\ 2 & -4 \end{bmatrix}, \quad \text{Basic eigenvector: } \mathbf{v_1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \\ \lambda_2 &= -7; \quad (A - 7I) = \begin{bmatrix} 4 & 4 \\ 2 & 2 \end{bmatrix}, \quad \text{Basic eigenvector: } \mathbf{v_2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}. \end{split}$$

Problem 17.9. The following figure shows a closed tank system with volumes and flows as indicated (in compatible units). Let's call the tank with $V_1 = 100$ tank 1, etc.



(a) Write down a system of differential equations modeling the amount of solute in each tank.

Solution: Let x_1, x_2, x_3, x_4 be the amount of solute in tanks 1 to 4 respectively. Note that the system is balanced, in that the volume in each tank is not changing. Using rate = rate in - rate out we get the following equations.

$$\begin{split} x_1' &= -10\frac{x_1}{V_1} + 10\frac{x_3}{V_3} = -0.1x_1 + 0.1x_3 \\ x_2' &= 10\frac{x_1}{V_1} - 15\frac{x_2}{V_2} + 5\frac{x_4}{V_4} = 0.1x_1 + -0.15x_2 + 0.125x_4 \\ x_3' &= 10\frac{x_2}{V_2} - 10\frac{x_3}{V_3} = 0.1x_2 - 0.1x_3 \\ x_4' &= 5\frac{x_2}{V_2} - 5\frac{x_4}{V_4} = 0.05x_2 - 0.125x_4 \end{split}$$

In matrix form this is

$\lceil x_1' \rceil$	[-0.1]	0	0.1	ך 0	$\begin{bmatrix} x_1 \end{bmatrix}$
$\begin{bmatrix} x_1' \\ x_2' \\ x_3' \\ x_4' \end{bmatrix} =$	0.1	-0.15	0	0.125	$ x_2 $
$ x'_{3} =$	0	0.1	-0.1	0	$ x_3 $
$\lfloor x'_4 \rfloor$	L 0	0.05	0	$\begin{bmatrix} 0 \\ 0.125 \\ 0 \\ -0.125 \end{bmatrix}$	$\lfloor x_4 \rfloor$

(b) Without computation you know one eigenvalue. What is it? What is a corresponding eigenvector?

Solution: Eventually the system has to reach equilibrium, where all the concentrations are equal. This means one eigenvalue is 0. At equilibrium we must have

$$\frac{x_1}{V_1} = \frac{x_2}{V_2} = \frac{x_3}{V_3} = \frac{x_4}{V_4}.$$

Therefore, using the values for the volumes, we have

$$x_2 = x_1, \quad x_3 = x_1, \quad x_4 = 0.4x_1.$$

We have
$$\mathbf{v} = \begin{bmatrix} 1\\ 1\\ 1\\ 0.4 \end{bmatrix}$$
 is an eigenvector.

(c) What can you say about all the other eigenvalues?

Solution: They all must be negative, or complex with negative real part. If any were positive, the amount of solute would be growing, which is impossible in a closed system.

Problem 16.10. Suppose that the matrix B has eigenvalues 1 and 7, with eigenvectors

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix} and \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

respectively.

(a) What is the solution to $\mathbf{x}' = Bx$ with $x(0) = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$?

Solution: The general solution is
$$\mathbf{x}(t) = c_1 e^t \begin{bmatrix} 1 \\ -1 \end{bmatrix} + c_2 e^{7t} \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$
.

We use the initial condition to find c_1 and c_2 :

$$\mathbf{x}(0) = c_1 \begin{bmatrix} 1\\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 5\\ 1 \end{bmatrix} = \begin{bmatrix} 2\\ 0 \end{bmatrix}.$$

In matrix form this is $\begin{bmatrix} 1 & 5 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$. So,

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 & -5 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 1/3 \end{bmatrix}.$$

So, $\mathbf{x}(t) = \frac{1}{3}e^t \begin{bmatrix} 1\\-1 \end{bmatrix} + \frac{1}{3}e^{7t} \begin{bmatrix} 5\\1 \end{bmatrix}$.

(b) Decouple the system $\mathbf{x}' = B\mathbf{x}$. That is, make a change of variables so that system is decoupled. Write the DE in the new variables.

Solution: Decoupling is just the change of variables $\mathbf{u} = S^{-1}\mathbf{x}$. So,

$$\mathbf{u} = S^{-1}\mathbf{x} \iff \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ -1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} x \\ y \end{bmatrix} \iff \begin{cases} u = x/6 - 5x/6 \\ v = x/6 + y/6. \end{cases}$$

In these coordinates the decoupled system is $\mathbf{u}' = \Lambda \mathbf{u} \iff \begin{bmatrix} u' \\ v' \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix}$.

(c) Give an argument based on transformations why $B = \begin{bmatrix} 1 & 5 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 7 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ -1 & 1 \end{bmatrix}^{-1}$ has the eigenvalues and eigenvectors given above.

Using the definition of eigenvalues and eigenvectors, we need to show that

$$B\begin{bmatrix}1\\-1\end{bmatrix} = \begin{bmatrix}1\\-1\end{bmatrix}$$
 and $B\begin{bmatrix}5\\1\end{bmatrix} = 7\begin{bmatrix}5\\1\end{bmatrix}$.

Multiplying by a standard basis vector just picks out the corresponding column of a matrix. So we have the following multiplication table:

$$S \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 1\\-1 \end{bmatrix} \implies S^{-1} \begin{bmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix}$$
$$S \begin{bmatrix} 0\\1 \end{bmatrix} = \begin{bmatrix} 5\\1 \end{bmatrix} \implies S^{-1} \begin{bmatrix} 5\\1 \end{bmatrix} = \begin{bmatrix} 0\\1 \end{bmatrix}$$
$$\Lambda \begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} 1\\0 \end{bmatrix}$$
$$\Lambda \begin{bmatrix} 0\\1 \end{bmatrix} = 7 \begin{bmatrix} 0\\1 \end{bmatrix}.$$

Using this table, we can now compute the product $S\Lambda S^{-1}\begin{bmatrix}5\\1\end{bmatrix}$.

$$S\Lambda S^{-1}\begin{bmatrix}5\\1\end{bmatrix} = S\Lambda\begin{bmatrix}0\\1\end{bmatrix} = S\begin{bmatrix}0\\7\end{bmatrix} = 7S\begin{bmatrix}0\\1\end{bmatrix} = 7\begin{bmatrix}5\\1\end{bmatrix}.$$

This shows that $\begin{bmatrix} 5\\1 \end{bmatrix}$ is an eigenvector of $S\Lambda S^{-1}$ with eigenvalue 7. The other eigenvalue/eigenvector pair behaves the same way.

Problem 16.11. Suppose the 2 × 2 matrix A has eigenvectors $\mathbf{v_1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\mathbf{v_2} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ with eigenvalues 2 and 4 respectively. (a) Find $A(\mathbf{v_1} + \mathbf{v_2})$.

Solution: $A(\mathbf{v_1} + \mathbf{v_2}) = A\mathbf{v_1} + A\mathbf{v_2} = 2\mathbf{v_1} + 4\mathbf{v_2} = 2\begin{bmatrix}1\\2\end{bmatrix} + 4\begin{bmatrix}1\\3\end{bmatrix} = \begin{bmatrix}6\\16\end{bmatrix}.$

(b) Find $A(5v_1 + 6v_2)$.

Solution: $A(\mathbf{5v_1} + \mathbf{6v_2}) = 5A\mathbf{v_1} + 6A\mathbf{v_2} = 10\mathbf{v_1} + 24\mathbf{v_2} = 10\begin{bmatrix}1\\2\end{bmatrix} + 24\begin{bmatrix}1\\3\end{bmatrix} = \begin{bmatrix}34\\92\end{bmatrix}$. (c) Find $A\begin{bmatrix}4\\9\end{bmatrix}$

Solution: By inspection or solving some equations, we get $\begin{bmatrix} 4 \\ 9 \end{bmatrix} = 3\mathbf{v_1} + \mathbf{v_2}$. So,

$$A\begin{bmatrix}4\\9\end{bmatrix} = 3A\mathbf{v_1} + A\mathbf{v_2} = 6\begin{bmatrix}1\\2\end{bmatrix} + 4\begin{bmatrix}1\\3\end{bmatrix} = \begin{bmatrix}10\\24\end{bmatrix}.$$

Problem 16.12. (a) Without calculation, find the eigenvalues and and basic eigenvectors for $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$.

Solution: Since $A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, we have $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue 2.

Likewise, $\begin{vmatrix} 0 \\ 1 \end{vmatrix}$ is an eigenvector with eigenvalue 3.

(b) Without calculation, find at least one eigenvector and eigenvalue for $A = \begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}$.

Solution: Since $A \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$, we have $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ is an eigenvector with eigenvalue 2.

The second eigenvector requires a small calculation.

Problem 16.13. Find the eigenvalues and basic eigenvectors of $A = \begin{bmatrix} -3 & 13 \\ -2 & -1 \end{bmatrix}$.

Solution: Characteristic equation: $\begin{vmatrix} -3 - \lambda & 13 \\ -2 & -1 - \lambda \end{vmatrix} = \lambda^2 + 4\lambda + 29 = 0 \Rightarrow \lambda = -2 \pm 5i.$ Basic eigenvectors for λ are a basis of Null $(A - \lambda I)$.

$$\begin{split} \lambda_1 &= -2 + 5i; \ (A - \lambda_1 I) \mathbf{v} = \begin{bmatrix} -1 - 5i & 13 \\ -2 & 1 - 5i \end{bmatrix} \mathbf{v_1} = 0. \quad \text{Basic eigenvector: } \mathbf{v_1} = \begin{bmatrix} 13 \\ 1 + 5i \end{bmatrix} \\ \lambda_2 &= -2 - 5i; \text{ Use complex conjugate: } \mathbf{v_2} = \overline{\mathbf{v_1}} = \begin{bmatrix} 13 \\ 1 - 5i \end{bmatrix}. \end{split}$$

Problem 17.14. Solve the system x' = x + 2y; y' = -2x + y.

Solution: The coefficient matrix is $A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}$. Characteristic equation: $\det(A - \lambda I) = \begin{vmatrix} 1 - \lambda & 2 \\ -2 & 1 - \lambda \end{vmatrix} = \lambda^2 - 2\lambda + 5 = 0.$

Eigenvalues $1 \pm 2i$.

Basic eigenvectors (basis of Null $(A - \lambda I)$): As usual, for the 2 case, we can find eigenvectors by inspection without row reduction.

$$\lambda = 1 + 2i$$
: $A - \lambda I = \begin{bmatrix} -2i & 2\\ -2 & -2i \end{bmatrix}$. Basic eigenvector $\begin{bmatrix} 1\\ i \end{bmatrix}$.

(We don't need an eigenvector from the complex conjugate $\lambda = 1 - 2i$.)

Complex solution:
$$\mathbf{z}(t) = e^{(1+2i)t} \begin{bmatrix} 1\\ i \end{bmatrix} = e^t (\cos(2t) + i\sin(2t)) \begin{bmatrix} 1\\ i \end{bmatrix} = e^t \begin{bmatrix} \cos(2t) + i\sin(2t) \\ -\sin(2t) + i\cos(2t) \end{bmatrix}$$
.

The real and imaginary parts of \mathbf{z} are both solutions:

$$\begin{aligned} \mathbf{x_1}(t) &= e^t \begin{bmatrix} \cos(2t) \\ -\sin(2t) \end{bmatrix}, \quad \mathbf{x_2}(t) = e^t \begin{bmatrix} \sin(2t) \\ \cos(2t) \end{bmatrix}. \\ \text{General solution: } \mathbf{x}(t) &= c_1 \mathbf{x_1} + c_2 \mathbf{x_2} = c_1 e^t \begin{bmatrix} \cos(2t) \\ -\sin(2t) \end{bmatrix} + c_2 e^t \begin{bmatrix} \sin(2t) \\ \cos(2t) \end{bmatrix}. \\ \text{Or } x(t) &= c_1 e^t \cos(2t) + c_2 e^t \sin(2t); \quad y(t) = -c_1 e^t \sin(2t) + c_2 e^t \cos(2t). \end{aligned}$$

Problem 17.15. (*Repeated roots*) Solve $\mathbf{x}' = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix} \mathbf{x}$.

Solution: The coefficient matrix is $A = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}$. Characteristic equation: $\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 \\ -1 & 1 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 4 = 0$ Eigenvalues: $\lambda = 2, 2$ (repeated)

Basic eigenvectors (basis of $\text{Null}(A - \lambda I)$): As usual, for the 2 case, we can find eigenvectors by inspection without row reduction.

$$\lambda = 2$$
: $A - \lambda I = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$. Basic eigenvector $\mathbf{v_1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

This gives one modal solution: $\mathbf{x_1}(t) = e^{2t} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Since there are not enough independent eigenvectors, the system is defective. For the second solution, we look for one of the form

$$\mathbf{x_2} = te^{2t} \begin{bmatrix} 1\\ -1 \end{bmatrix} + e^{2t} \mathbf{w}.$$

(**w** is called a generalized eigenvector. It satisfies (A - 2I)**w** = **v**.)

After some algebra, we find that we can take $\mathbf{w} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. So, $\mathbf{x}_2(t) = te^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + e^{2t} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. General solution: $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$.

Problem 15.16. Use row reduction to find inverses of the following matrices. As you do this, record the row operations carefully for later problems.

(a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -6 & 2 & -2 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 2 & 1 & 0 & | & 0 & 1 & 0 \\ -6 & 2 & -2 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1} \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 2 & -2 & | & 6 & 0 & 1 \end{bmatrix}$$
$$\xrightarrow{R_3 = R_3 - 2R_2} \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & -2 & | & 10 & -2 & 1 \end{bmatrix}$$
$$\xrightarrow{R_3 = R_3/(-2)} \xrightarrow{R_3 = R_3/(-2)} \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -5 & 1 & -1/2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 & | & -5 & 1 & -1/2 \end{bmatrix}$$

So, $A^{-1} = \begin{bmatrix} -2 & 1 & 0 \\ -5 & 1 & -1/2 \end{bmatrix}$ (b) $B = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 2 & 2 \\ 3 & 5 & 7 \end{bmatrix}$

Solution:

$$\begin{bmatrix} 1 & 3 & 5 & | & 1 & 0 & 0 \\ 2 & 2 & 2 & | & 0 & 1 & 0 \\ 3 & 5 & 7 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = R_2 - 2R_1}_{R_3 = R_3 - 3R_1} \begin{bmatrix} 1 & 3 & 5 & | & 1 & 0 & 0 \\ 0 & -4 & -8 & | & -2 & 1 & 0 \\ 0 & -4 & -8 & | & -3 & 0 & 1 \end{bmatrix} \xrightarrow{R_3 = R_3 - R_2} \begin{bmatrix} 1 & 3 & 5 & | & 1 & 0 & 0 \\ 0 & -4 & -8 & | & -2 & 1 & 0 \\ 0 & 0 & 0 & | & 1 & -1 & 1 \end{bmatrix}$$

The last row of the reduced matrix has all zeros on the left. This implies the rank of B is 2, and therefore no inverse exists.

 $(\mathbf{c}) \ C = \begin{bmatrix} 1 & 3 & 4 & 2 \\ 0 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 \end{bmatrix}$

Solution: No inverse the matrix is not square.

(d) $D = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 0 & 8 \\ 3 & 2 & 5 \end{bmatrix}$

Solution: Row reduction:

$$\begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 1 & 0 & 8 & | & 0 & 1 & 0 \\ 3 & 2 & 5 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & -2 & 5 & | & -1 & 1 & 0 \\ 0 & -4 & -4 & | & -3 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{R_3 = R_3 - 2R_2} \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & -2 & 5 & | & -1 & 1 & 0 \\ 0 & 0 & -14 & | & -1 & -2 & 1 \end{bmatrix}$$

$$\xrightarrow{R_2 = R_2/(-2)} \xrightarrow{R_3 = R_3/(-14)} \begin{bmatrix} 1 & 2 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & -5/2 & | & 1/2 & -1/2 & 0 \\ 0 & 0 & 1 & | & 1/14 & 1/7 & -1/14 \end{bmatrix}$$

$$\xrightarrow{R_2 = R_2 + \frac{5}{2}R_3} \xrightarrow{R_1 = R_1 - 3R_3} \begin{bmatrix} 1 & 2 & 0 & | & 11/14 & -3/7 & 3/14 \\ 0 & 1 & 0 & | & 19/28 & -1/7 & -5/28 \\ 0 & 0 & 1 & | & 1/14 & 1/7 & -1/14 \end{bmatrix}$$

$$\xrightarrow{R_1 = R_1 - 2R_2} \begin{bmatrix} 1 & 0 & 0 & | & -4/7 & -1/7 & 4/7 \\ 0 & 1 & 0 & | & 19/28 & -1/7 & -5/28 \\ 0 & 0 & 1 & | & 1/14 & 1/7 & -1/14 \end{bmatrix}$$

$$\xrightarrow{-4/7} -\frac{-1/7}{-7} -\frac{4/7}{-7} = \frac{1}{7} \begin{bmatrix} -16 & -4 & 16 \\ 10 & -4 & -5 \end{bmatrix}$$

So
$$D^{-1} = \begin{bmatrix} -4/7 & -1/7 & 4/7 \\ 19/28 & -1/7 & -5/28 \\ 1/14 & 1/7 & -1/14 \end{bmatrix} = \frac{1}{28} \begin{bmatrix} -16 & -4 & 16 \\ 19 & -4 & -5 \\ 2 & 4 & -2 \end{bmatrix}$$

Problem 15.17. Using just the record of the row operations in Problem 15.16 compute the determinant of each matrix.

(a) Solution: Looking at the effects of the row operations on the det(A) we get

 $R_2=R_2-2R_1,\,R_3R_3+6R_1:$ leaves determinant unchanged.

 $R_3 = R_3 - 2R_2$: leaves determinant unchanged.

 $R_3=R_3/(-2)\colon$ multiplies the determinant by -1/2.

E1 7

Since det(I) = 1 this gives us (-1/2) det(A) = 1, so det(A) = -2.

(b) Solution: det(B) = 0, because determinant of row reduced form is 0.

(c) Solution: No determinant: the matrix is not square.

(d) Solution: The only row operations that change the determinant are $R_2 = R_2/(-2)$ and $R_3 = R_3/(-14)$. So $(-1/2)(-1/14) \det(D) = 1 \implies \det(D) = 28$.

Problem 15.18. Compute the transpose of the following matrices.

$$A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix} \quad B = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \quad C = \begin{bmatrix} 5 & 6 & 7 \end{bmatrix}. \quad D = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

Solution: $A^T = \begin{bmatrix} 6 & 1 \\ 5 & 2 \end{bmatrix} \quad B^T = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \quad C^T = \begin{bmatrix} 5 \\ 6 \\ 7 \end{bmatrix} \quad D^T = \begin{bmatrix} 1 & 3 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix}$

Problem 15.19. Let $A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix}$ $D = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$

Show by direct computation that $(AD)^T = (D^T A^T)$.

Solution:
$$AD = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} = \begin{bmatrix} 31 & 42 & 53 & 64 \\ 11 & 14 & 17 & 20 \end{bmatrix}$$
 and
 $D^{T}A^{T} = \begin{bmatrix} 1 & 5 \\ 2 & 6 \\ 3 & 7 \\ 4 & 8 \end{bmatrix} \begin{bmatrix} 6 & 1 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 31 & 11 \\ 42 & 14 \\ 53 & 17 \\ 64 & 20 \end{bmatrix}$. Now, by inspection, we see that $(AD)^{T} = D^{T}A^{T}$

Problem 15.20. (a) Recall the notation for inner product: $\langle \mathbf{v}, \mathbf{w} \rangle$. Assume \mathbf{v} and \mathbf{w} are column vectors. Write the formula for inner product in terms of transpose and matrix multiplication.

Solution: $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^T \mathbf{w}$. For example

$$\left\langle \begin{bmatrix} 1\\2\\3\\5 \end{bmatrix}, \begin{bmatrix} 2\\3\\5 \end{bmatrix} \right\rangle = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2\\3\\5 \end{bmatrix} = 23$$

(b) Using this definition show $\langle A\mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{v}, A^T \mathbf{w} \rangle$.

Solution: $\langle A\mathbf{v}, \mathbf{w} \rangle = (A\mathbf{v})^T \mathbf{w} = \mathbf{v}^T A^T \mathbf{w} = \langle \mathbf{v}, A^T \mathbf{w} \rangle.$

You are not responsible for orthogonal matrices. The following is just for fun!

Problem 16.21.

(a) An orthogonal matrix is one where the columns are orthonormal (mutually orthogonal and unit length). Equivalently, S is orthogonal if $S^{-1} = S^T$.

Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Find an orthogonal matrix S and a diagonal matrix Λ such that $A = S\Lambda S^{-1}$

Solution: The problem is asking us to diagonalize A, taking care that the matrix S is orthogonal.

A has characteristic equation: $\lambda^2 - 2\lambda - 3$. So it has eigenvalues $\lambda_1 = -1$, $\lambda_2 = 3$. By inspection (or computation), we have eigenvectors $\mathbf{v_1} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\mathbf{v_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

These are clearly orthogonal to each other. We normalize their lengths and use the normalized eigenvectors in the matrix S.

$$S = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}; \quad \Lambda = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \quad \Rightarrow A = S\Lambda S^{-1}.$$

Note: A is a symmetric matrix. It turns out that symmetric matrix has an orthonormal set of basic eigenvectors.

(b) Decouple the equation $\mathbf{x}' = A\mathbf{x}$, with $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$.

Solution: The decoupling change of variable is $\mathbf{u} = S^{-1}\mathbf{x} \iff \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.

The decoupled system is $\mathbf{u}' = \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix} \mathbf{u} \iff \begin{cases} u'_1 = -u_1 \\ u'_2 = 3u_2 \end{cases}$.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.