
ES.1803 Problem Set 1, Spring 2024 Solutions 

Part II (77 points) 

Problem 1 (Topic 1) (20: 10,10) 
I have a bank account whose interest is compounded continuously with a variable interest 
rate 𝑎(𝑡). In 2023 I neither deposited nor withdrew money. 
(a) Using the definition of deriviative as a limit of Δ𝑥

Δ𝑡 , explain why the differential equation 
satisfied by the amount of money, 𝑥(𝑡) is 𝑥′(𝑡) = 𝑎(𝑡)𝑥(𝑡). 
Solution: When going from time 𝑡 to 𝑡 + Δ𝑡, we have Δ𝑥 = interest earned over the period 
Δ𝑡. That is, 

Δ𝑥 Δ𝑥 ≈ 𝑎(𝑡)𝑥(𝑡)Δ𝑡 or Δ𝑡 ≈ 𝑎(𝑡)𝑥(𝑡). 

In the limit, the approximation becomes both exact and gives the differential equation we 
want. 
(b) Much to my surprise, I discovered my balance rose only linearly. That is, 𝑥(𝑡) = 𝑚𝑡 + 𝑏 
for certain positive constants 𝑚 and 𝑏. Is this possible? I suspect foul play and decide to 
apply the methods of 18.03. What can I conclude about the interest rate (in terms of 𝑚 and
𝑏). 
We could solve the (separable) DE and solve for 𝑎(𝑡), but a much easier method is to 
differentiate the given formula, 𝑥(𝑡) = 𝑚𝑡 + 𝑏. This gives 𝑥′ = 𝑚. Combining this with the 
DE from Part (a) we get, 

𝑚 = 𝑎(𝑡)𝑥(𝑡) = 𝑎(𝑡)(𝑚𝑡 + 𝑏) ⇒ 𝑎(𝑡) = 𝑚/(𝑚𝑡 + 𝑏). 

So what happened is possible. Whether or not you see this as foul play depends on how 
you feel about a bank that continuously lowers its interest rate over time. 

Problem 2 (Topic 3) (15: 10,5) 
(a) This problem is warmup for Problem 3. It is about matching initial and final conditions 
at transition points of the input. 
Solve the DE 𝑥′ + 𝑘𝑥 = 𝑓(𝑡), 𝑥(0) = 0, where the input 𝑓(𝑡) is given by 

⎧1 for 0 ≤ 𝑡 < 0.5 {
𝑓(𝑡) = 0 for 0.5 ≤ 𝑡 < 1 ⎨{⎩1 for 1 ≤ 𝑡. 

Give the solution 𝑥(𝑡) in cases format. (The function 𝑓(𝑡) above is given in cases format). 
Use the format shown in the circuit example in the Topic 3 notes. For example, in the 
interval 0.5 ≤ 𝑡 < 1 the solution is 𝑥(𝑡) = 𝐶1𝑒−𝑘(𝑡−0.5), where 𝐶1 = 𝑥(0.5) matches the value 
of 𝑥(𝑡) at the end of the interval 0 ≤ 𝑡 < 0.5. 
Solution: The key to this problem is organizing the coefficients. First we solve the following 
two DEs with arbitrary initial conditions: 

𝑥′ + 𝑘𝑥 = 0; 𝑥(𝑡0) = 𝑏. (1) 

1 
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This is our standard exponential decay equation. We write the solution as 

𝑥(𝑡) = 𝑏𝑒−𝑘(𝑡−𝑡0). (Solution to 1) 

and 
𝑥′ + 𝑘𝑥 = 1; 𝑥(𝑡0) = 𝑏. (2) 

This has a constant input, so we guess a constant solution 𝑥(𝑡) = 𝑐. Substituting this 
into the equation gives 𝑐 = 1/𝑘. Now, the superposition principle says that we can add 
the homogeneous solution to our constant solution to get the general solution: 𝑥(𝑡) = 
1/𝑘 + 𝐶𝑒−𝑘(𝑡−𝑡0). Finally, the initial condition gives 

𝑥(𝑡) = 𝑘
1 + (𝑏 − 𝑘

1)𝑒−𝑘(𝑡−𝑡0). (Solution to 2) 

Now we have to patch together each of the intervals in the problem. 
On 0 < 𝑡 < 0.5: the DE is Equation 2 and the IC is 𝑥(0) = 0. So, 

𝑥(𝑡) = 
1 

𝑘𝑒−𝑘𝑡.𝑘 
− 

1 

At the end of the interval we have 𝑡 = 0.5, and 

𝑥(0.5) = 𝑘
1 (1 − 𝑒−0.5𝑘) ∶= 𝑥0.5. 

Note, that to avoid rewriting the messy formula we gave 𝑥(0.5) the name 𝑥0.5. 
The next interval is 0.5 < 𝑡 < 1. The DE is Equation 1 and the IC comes from the previous 
interval: 𝑥(0.5) = 𝑥0.5. So the solution on this interval is 

𝑥(𝑡) = 𝑥0.5𝑒−𝑘(𝑡−0.5) 

At the end of the interval we have 𝑡 = 1 and 

𝑥(1) = 𝑥0.5𝑒−𝑘(0.5) ∶= 𝑥1. 

The next interval is 1 < 𝑡. The DE is again Equation 2 and the IC is 𝑥(1) = 𝑥1. So the 
solution on this interval is 

1𝑥(𝑡) = 𝑘 + (𝑥1 − 𝑘
1) 𝑒−𝑘(𝑡−1). 

1Collecting up terms: 𝑥0.5 = 𝑘
1(1 − 𝑒−0.5𝑘), 𝑥1 = 𝑥0.5𝑒−𝑘(0.5) = 𝑘 

(𝑒−0.5𝑘 − 𝑒−𝑘). Here is 

the full solution in cases format 

⎧𝑘
1 − 𝑘

1 𝑒−𝑘𝑡 for 0 < 𝑡 < 0.5
{

𝑥(𝑡) = 𝑘
1 (1 − 𝑒−0.5𝑘) 𝑒−𝑘(𝑡−0.5) for 0.5 < 𝑡 < 1⎨

{ 1 
𝑘 (−1 + 𝑒−0.5𝑘 − 𝑒−𝑘) 𝑒−𝑘(𝑡−1)⎩𝑘 + 1 for 1 < 𝑡. 

(b) For 𝑘 = 1: graph the solution for Part (a). If this DE is modeling a mixing-tank 
situation, describe in words the behavior of the level of salt in the tank that this graph is 
showing. Aslo explain how the behavior of the response relates to the input salt rate 𝑓(𝑡). 
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Solution: The amount of salt rises or falls depending on whether input is 1 or 0. The 
corners in the graph show the abrupt change in input. When the graph falls, it is decaying 
exponentially. 

𝑥 

𝑡 

1 

0.5 1 

Problem 3 (Topic 3) (22: 6,6,10) 
A population of lemmings, crazed by global warming, has been flinging themselves into the 
sea at a rate faster than they can reproduce. As a result the deathrate of the lemmings is 
now greater than the birthrate, so the population is in decline. Studies show that if nothing 
is done, then the lemming population is halved every 3 years. 
(a) Let 𝑥 be the number of lemmings, 𝑡 the time in years, 𝑘 > 0 the decay rate of the 
lemming population. 
(i) Modeling this with continuous variables, show that the DE for 𝑥 as a function of 𝑡 is
𝑥′ + 𝑘𝑥 = 0. (We’re just looking for a one line answer.) 

(ii) Give the value of 𝑘, including units. 
(iii) Assume that at time 𝑡0 the population is 𝑥0. Give the solution to the DE in (i) that 
satisfies this initial condition. (This gives the ‘natural’ behavior of the system, i.e., the 
population of lemmings, over time, when there is no input.) 

Solution: (i) The exponential decay is modeled as 𝑥′ = −𝑘𝑥 ⇒ 𝑥′ + 𝑘𝑥 = 0. 
ln(2) ≈ 

0.231(ii) Since the population is halved in 3 years, 𝑒−𝑘⋅3 years = 1/2, or 𝑘 = .3 years years 

(iii) This is standard exponential decay: The solution is 𝑥(𝑡) = 𝑥0𝑒−𝑘(𝑡−𝑡0). 
(b) Alarmed by the potential loss of tourist business if the big annual lemming run should 
disappear, an importation/stocking program has been introduced by the Greenland Chamber 
of Commerce. For 6 months of the year (Jan. 1 to June 30), they import Canadian 
lemmings at a constant rate of 𝑟 lemmings per year. For the other 6 months (July 1 to Dec. 
31) the lemmings are left to their own devices. 
(i) Show that 𝑥′ +𝑘𝑥 = 𝑟 is the DE that models the population when restocking is occurring. 
(Again, one line will suffice.) 

(ii) Assume that, at time 𝑡0, the population is 𝑥0. Give the solution to the DE in (i) that 
satisfies this initial condition. 
Solution: (i) The constant input of lemmings is modeled by 𝑥′ = 𝑟. Combining this with 
the exponential decay of Part (a) gives: 𝑥′ = −𝑘𝑥 + 𝑟 or 𝑥′ + 𝑘𝑥 = 𝑟. 
(ii) This equation is both separable and first-order linear. It is also the same equation as 
(2) in the solution to (2a) except with the input 𝑟 instead of 1. 
With initial value at 𝑡0, it is best to write the solution as: 𝑥(𝑡) = 𝑟/𝑘 + (𝑥0 − 𝑟/𝑘)𝑒−𝑘(𝑡−𝑡0). 
(c) Assume on Jan. 1 of 2023, the population was 1000. Also, assume the stocking rate 
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𝑟 is 2000 lemmings per year. Using your answers to Parts (a) and (b), find the lemming 
population on Jan. 1, 2025. (For the purposes of this problem, you should take the period 
Jan. 1 to July 1 to be exactly 0.5 years and 𝑘 = 0.25.) 

So we all get the same answer, keep the full precision for intermediate values, but report 
your final answer as an integer. (It doesn’t pay to contemplate fractional lemmings.) 

Solution: Constants and units: 𝑡 in years, 𝑘 = 0.25 /years, 𝑟 = 2000 lemmings/year, 
𝑟/𝑘 = 8000 lemmings. 

𝑥(𝑡) = 𝑥(𝑡0)𝑒−𝑘(𝑡−𝑡0)Parts (a) and (b) give: No stocking: . 
Stocking: 𝑥(𝑡) = 𝑟/𝑘 + (𝑥(𝑡0) − 𝑟/𝑘)𝑒−𝑘(𝑡−𝑡0). 

We use these solutions to make the following table. 
0 ≤ 𝑡 < 0.5 ∶ (Stocking) 𝑡0 = 0, 𝑥0 = 𝑥(0) = 1000 ⇒ 𝑥(0.5) = 1822.522. 
0.5 ≤ 𝑡 < 1 ∶ (Not stocking) 𝑡0 = 0.5, 𝑥0 = 𝑥(0.5) = 1822.522 ⇒ 𝑥(1) = 1608.37. 
1 ≤ 𝑡 < 1.5 ∶ (Stocking) 𝑡0 = 1, 𝑥0 = 𝑥(1) = 1608.37 ⇒ 𝑥(1.5) = 2359.406. 
1.5 ≤ 𝑡 < 2 ∶ (Not stocking) 𝑡0 = 1.5, 𝑥0 = 𝑥(1.5) = 2359.406 ⇒ 𝑥(2) = 2082.169. 

Our model says that on Jan. 1, 2025 (𝑡 = 2) there will be 2082 lemmings. 

Problem 4 (Topic 1) (20: 10,10) 
Read Section 1.11 (orthogonal trajectories) in the notes for Topic 1. 
For each of the following families of curves, 
(i) find the ODE satisfied by the family 

(ii) find the orthogonal trajectories to the given family 

(iii) sketch the given family and the orthogonal trajectories. 
(a) The family of curves 𝑥 = −𝑦2/2 + 𝑐, where 𝑐 is different for each member of the family. 

Solution: (i) Isolating the 𝑐 and then differentiating with respect to 𝑥, we get, for each 
curve in the family 

⇒ 
𝑑𝑦 𝑥 + 

𝑦2
= 𝑐 ⇒ 1 + 𝑦 

𝑑𝑦 
2 𝑑𝑥 

= 0 𝑑𝑥 
= −𝑦

1. 

𝑑𝑦 (ii) The orthogonal trajectories have derivative 𝑑𝑥 
= 𝑦. 

Solving this equation (it is our most important DE) gives the orthogonal family 𝑦 = 𝑐 𝑒𝑥 . 

(iii) Figure with (b) below. 
(b) The family of curves 𝑥2 + 2𝑦2 = 𝑐. 
Solution: (i) Taking the derivative with respect to 𝑥, we get 

⇒ 
𝑑𝑦 2𝑥 + 4𝑦 

𝑑𝑦 
𝑑𝑥 

= 0 𝑑𝑥 
= −2𝑦

𝑥 

𝑑𝑦 2𝑦 (ii) The orthogonal trajectories have derivative 𝑑𝑥 
= 𝑥 

. 
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𝑑𝑦 2𝑑𝑥 Solving this equation by separation of variables gives = ⇒ ln |𝑦| = 2 ln |𝑥| + 𝑐. 𝑦 𝑥 

if 𝑦 > 0 Exponentiating this gives |𝑦| = 𝑒𝑐𝑥2. Dropping the absolute value, we get 𝑦 = {𝑒𝑐𝑥2 

−𝑒𝑐𝑥2 if 𝑦 < 0. 
Now, remembering the lost solution 𝑦(𝑥) ≡ 0, we get the full solution 

𝑦 = 𝑐𝑥2, where the parameter 𝑐 can take any value. 
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End of pset 1 solutions 



MIT OpenCourseWare 

https://ocw.mit.edu 

ES.1803 Differential Equations 
Spring 2024 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms

