
ES.1803 Problem Set 4, Spring 2024 Solutions 

Part II (110 + 10 EC points) 

Problems 1-5 are really one long problem, aimed at filling out and understanding the table 
below. We will look at the following three DEs, modeling a damped spring-mass system 
driven in various ways. Our main focus will be on the amplitude response (or gain) and 
how it differs between the three systems. 
System (i) 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑘𝑓(𝑡) (system driven through the spring) 

System (ii) 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑏𝑓′(𝑡) (system driven through the dashpot) 

System (iii) 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑚𝜔2𝑓(𝑡) (system driven by an unbalanced flywheel). 

In all cases the input is 𝑓(𝑡) = 𝐵 cos(𝜔𝑡), where 𝐵 and 𝜔 are constants. 

As usual, 𝑚, 𝑏 and 𝑘 are constants. The physical systems and the explanation of the models 
are given for (i) and (ii) in the Topic 6 notes. The system in (iii) is taken from the textbook 
by Edwards and Penney Section 2.6 (right before and in Problem 28). 
Problem 1 (Topic 9) (15) Output, Gain and Phase Lag 
As in Pset 3, Problem 2, let 𝑓(𝑡) = 𝐵 cos(𝜔𝑡) and 𝑃 (𝑠) = 𝑚𝑠2 + 𝑏𝑠 + 𝑘. 
Either solve the DEs again or use your answers to Pset 3, Problem 2 to fill in the gain 
and phase lag rows in the table. For the gain, write your answer both formally, in terms of 
|𝑃 (𝑖𝜔)|, and in detail, in terms of 𝑚, 𝑏, 𝑘, and 𝜔. For the phase lag, you just need to give 
the formal version in terms of Arg(𝑃 (𝑖𝜔)). (But be careful, not every phase lag is simply 
Arg(𝑃 (𝑖𝜔)).) 

Show your work on your paper and either print out the chart or make a copy and put the 
final answer in that. 
Now fill in the output row of the table. To make things simpler, you only need to write 𝑥(𝑡)
in terms of 𝑔(𝜔) and 𝜙(𝜔). 
Solution: See table. We took the solutions from Problem 2, Pset 3. Using these, we could 
fill in the output, gain and phase lag rows of the table. 
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System (i) System (ii) System (iii) 

Right-hand side 
of DE 
(Input = 𝑓(𝑡)) 

𝑘𝑓(𝑡) 𝑏𝑓′(𝑡) 𝑚𝜔2𝑓(𝑡) 

Output 𝑥(𝑡) 𝐵𝑔(𝜔) cos(𝜔𝑡 − 𝜙(𝜔)) 𝐵𝑔(𝜔) cos(𝜔𝑡 − 𝜙(𝜔)) 𝐵𝑔(𝜔) cos(𝜔𝑡 − 𝜙(𝜔)) 

Gain 𝑔(𝜔) 𝑘 𝑘 = |𝑃 (𝑖𝜔)| √(𝑘−𝑚𝑤2 )2+𝑏2𝜔2 
𝑏𝜔 𝑏𝜔 = |𝑃 (𝑖𝜔)| √(𝑘−𝑚𝑤2)2+𝑏2 𝜔2 

𝑚𝜔2 𝑚𝜔2= |𝑃 (𝑖𝜔)| √(𝑘−𝑚𝑤2)2 +𝑏2𝜔2 

Phase lag 𝜙(𝜔) Arg(𝑃 (𝑖𝜔)) Arg(𝑃 (𝑖𝜔)) − 𝜋/2 Arg(𝑃 (𝑖𝜔)) 

𝜔𝑟 
√2𝑚𝑘 − 𝑏2 

2𝑚2 

(if 2𝑚𝑘 − 𝑏2 > 0) 
√ 𝑘 = 𝜔0𝑚 

√
2𝑘 √

2𝑚𝑘 − 𝑏2 

(if 2𝑚𝑘 − 𝑏2 > 0) 

Filter type Low pass Band pass High pass 

Table for Problems 1-5 

Note. 𝑃 (𝑖𝜔) = 𝑘 − 𝑚𝜔2 + 𝑖𝑏𝜔, so 

𝑏𝜔 |𝑃 (𝑖𝜔)| = √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 and Arg(𝑃 (𝑖𝜔)) = tan−1 (𝑘 − 𝑚𝜔2 ) in Q1 or Q2. 

Problem 2 (Topic 9) (30: 10,10,10) Practical Resonance 
Hint: In all three parts of this problem, the maximum of 𝑔(𝜔) is at the same point as the 
minumum of 1/𝑔(𝜔)2, but the latter is easier to work with. Parts (a) and (c) require a small 
amount of calculus. Part (b) can be done with or without calculus. 
(a) Find the practical resonant frequency 𝜔𝑟 for System (i). Be sure to note the conditions 
when there is no resonance. Add 𝜔𝑟 to the table. 

𝑘 Solution: Finding 𝜔𝑟 means finding the maximum of 𝑔(𝜔) = √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 
. 

1 (𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 

Following the hint: define ℎ(𝜔) = = .𝑔(𝜔)2 𝑘2 

Maximizing 𝑔(𝜔) is the same as minimizing ℎ(𝜔). 



3 ES.1803 Problem Set 4, Spring 2024 Solutions 

−4𝑚𝜔(𝑘 − 𝑚𝜔2) + 2𝑏2𝜔 = 0 ⇒ 𝜔 = 0 or 𝜔 = √2𝑚𝑘 − 𝑏2 
Using calculus: ℎ′(𝜔) = .𝑘2 2𝑚2 

= √2𝑚𝑘 − 𝑏2 
Therefore, if 2𝑚𝑘 − 𝑏2 > 0 , there is a practical resonant frequency at 𝜔𝑟 .2𝑚2 

(In terms of the system’s natural frequency: 𝜔𝑟 = √𝜔0
2 − 𝑏2/2𝑚2 < 𝜔0.) 

(b) Repeat Part (a) for System (ii). 
Solution: Using the same technique as in Part (a): 

1 (𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 (𝑘 − 𝑚𝜔2)2
ℎ(𝜔) = = = + 1. 𝑔(𝜔)2 𝑏2𝜔2 𝑏2𝜔2 

Because the first term is a square the minumum occurs when it is 0. 
That is, the minimum is when 𝑘−𝑚𝜔2 = 0 ⇒ there is always a practical resonant frequency 

at 𝜔𝑟 = √𝑘/𝑚. 
(In terms of the system’s natural frequency 𝜔𝑟 = 𝜔0.) 

(c) Repeat Part (a) for System (iii). 
1 (𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 𝑘2 

Solution: As in Parts (a) and (b): ℎ(𝜔) = = = 𝑔(𝜔)2 𝑚2𝜔4 𝑚2𝜔4 
− 

2𝑘 𝑏2 

𝑚𝜔2 
+ 1 + 𝑚2𝜔2 

. 

ℎ′(𝜔) = − 
4𝑘2 4𝑘 = 0𝑚2𝜔5 

+ 𝑚𝜔3 
− 𝑚

2𝑏
2𝜔

2 

3 

⇒ −4𝑘
𝑚2

2 

+ 
4𝑘
𝑚 𝜔2 − 

2𝑏2 2𝑘2𝑚2 

𝑚2 𝜔2 = 0 ⇒ 𝜔2 = 2𝑚𝑘 − 𝑏2 
. 

√
2𝑘 ⇒ 𝑤𝑟 = √

2𝑚𝑘 − 𝑏2 
, provided 2𝑚𝑘 − 𝑏2 > 0. 

𝑘/𝑚 (Equivalently, divide numerator and denominator by 
√

2𝑚, 𝜔𝑟 = Or in √𝑘/𝑚 − 𝑏2/2𝑚2 
. 

𝜔0
2 

terms of the system’s natural frequency 𝜔𝑟 = √𝜔0
2 − 𝑏2/2𝑚2 

.) 

Problem 3 (Topic 9) (15: 10,5) Visualization 
(a) Start the applet: https://mathlets.org/mathlets/amplitude-and-phase-2nd-order/. 
This is a visualization of System (i). Turn on the Bode and Nyquist plots. Play with the 
applet, be sure you can identify which plot shows the amplitude response. 
Note: The equation in the applet has 𝑚 = 1, i.e., the coefficient of 𝑥″ is 1. 
Note: When adjusting a slider, once you’ve selected the slider, you can get fine control 
using the arrow keys to move it. You can leave your mouse in the gain graph window to get 
a readout of the gain value. 
(i) Set 𝑘 = 1 and 𝑏 = 0.5. Use the graphs to determine if the system has a resonant 
frequency. If it does, give its value. Include a sketch of the amplitude response graph –no 
credit if you don’t label the axes. 

https://mathlets.org/mathlets/amplitude-and-phase-2nd-order/
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(ii) Set 𝑘 = 1 and 𝑏 = 1.5 and repeat Part (i) 

(iii) Check your answers in (i) and (ii) against your answer to Problem 2. 
(iv) Still with 𝑘 = 1 find the value of 𝑏 where practical resonance disappears. Check this 
with with your answer to Problem 2. 
Solution: (i) There is practical resonance at 𝜔𝑟 ≈ 0.95. (Figure is below.) 

(ii) No practical resonance. (Figure is below.) 

(iii) In the applet, 𝑚 = 1, so the formula for the resonant frequency in Problem 2 becomes 
𝜔𝑟 = √(2𝑘 − 𝑏2)/2. 
For 𝑘 = 1, 𝑏 = 0.5 we get 𝜔𝑟 = √7/8 ≈ 0.935. 
For 𝑘 = 1, 𝑏 = 1.5 we get 2𝑘 − 𝑏2 = −0.25 < 0, so no practical resonance. 
Both of these match what we found in the applet in Parts (i) and (ii) 

(iv) Using the applet we see practical resonance disappears when the amplitude curve does 
not have a maximum. If you watch the pixels carefully when 𝑘 = 1 this happens in the 
applet when 𝑏 ≈ 1.42. 
In general, there is no practical resonance when 2𝑚𝑘 − 𝑏2 < 0. With 𝑘 = 1, 𝑚 = 1 this 

becomes 2 − 𝑏2 < 0. So there is not practical resonance for 𝑏 > 
√

2 ≈ 1.41 . Again, the 
applet and the theory are aligned. 

𝜔 

𝐴 

𝜔𝑟 

1 

𝜔 

𝐴 

1 

1 

Amplitude for 𝑏 = 0.5 and 𝑏 = 1.5. 
(b) Start the applet: https://mathlets.org/mathlets/amplitude-and-phase-2nd-order-ii/. 
Check the Bode plots checkbox. Describe how the amplitude response changes as 𝑏 and 𝑘 are 
varied. 
Solution: The (practical) resonant frequency 𝜔𝑟 is independent of 𝑏 (i.e., doesn’t change 
as 𝑏 changes). It increases as 𝑘 increases and decreases to 0 as 𝑘 goes to 0. 
The peak amplitude is always 𝐴 = 1. As 𝑏 decreases the amplitude response becomes more 
spiked around 𝜔𝑟. 

Problem 4 (Topic 9) (15: 5,5,5) Visualization and Filtering 
The systems in this pset can be considered filters. This means that they respond differently 
to input signals of different frequencies. For the frequencies where the gain is relatively 
large, we say the filter passes the frequency, for those where the gain is small, we say it 
stops the frequency. Here, we’ll see how the power of 𝜔 in the gain affects the shape of the 
filter. 
Start applet: https://web.mit.edu/jorloff/www/OCW-ES1803/mbk4.html This applet shows 
graphs for the system 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝜔𝑛 cos(𝜔𝑡), where 𝑛 is a set-able parameter. So the 

https://mathlets.org/mathlets/amplitude-and-phase-2nd-order-ii/
https://web.mit.edu/jorloff/www/OCW-ES1803/mbk4.html
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applet covers all the powers of 𝜔 we’ve seen in the previous problems. 
(a) Set 𝑛 = 0, 𝑚 = 0.5, 𝑏 = 1, 𝑘 = 1. Use the applet graphs to explain the use of the term 
‘low pass’ in the filter row of the table. 
Solution: The three graphs below show the gain for Parts (a), (b) and (c). 
The graph for Part (a) shows the gain starting at 1, staying level for a bit and then falling 
towards 0. This means that low frequencies are passed and high frequencies are stopped. 
Hence the name low pass filter. 

𝜔 

𝑔 

1 

𝜔 

𝑔 

1 

𝜔 

𝑔 

1 

Part (a): 𝑛 = 0 Part (b): 𝑛 = 1 Part (c): 𝑛 = 2 

(b) Set 𝑛 = 1, 𝑚 = 1.5, 𝑏 = 0.8, 𝑘 = 5. Use the applet graphs to explain the use of the term 
‘band pass’ in the filter row of the table. (A range of frequencies is referred to as a band.) 

Solution: The second graph above shows the gain has a peak and drops off to 0 on either 
side of the peak. This means the frequencies in a band around the peak frequency are 
passed and the others are stopped. Hence the name band pass filter. 
(c) Set 𝑛 = 2, 𝑚 = 1, 𝑏 = 1, 𝑘 = 1. Use the applet graphs to explain the use of the term 
‘high pass’ in the filter row of the table. 
Solution: The third graph above shows the gain is small for low frequencies and is close 
to 1 for high frequencies. This means low frequencies are stopped and high frequencies are 
passed. Hence the name high pass filter. 

Problem 5 (Topic 9) (20: 5,5,5,5) AM Radio Tuning and LRC Circuits 
An LRC circuit can be modeled using the same DE as in system (ii). Specifically, we often 
want to know the voltage 𝑉𝑅 across the resistor. This is modeled by the DE 

𝐿𝑉𝑅
″ + 𝑅𝑉𝑅

′ + 𝐶
1 𝑉𝑅 = 𝑅𝐸′. 

Where 𝐿 = inductance in henries, 𝑅 = resistance in ohms, 𝐶 = capacitance in farads and 
𝐸 = input EMF in volts. 
(a) Assume 𝐸 = 𝐸0 cos(𝜔𝑡) and use the table to give the periodic solution for 𝑉𝑅 in 
amplitude-phase form. 
Solution: This is only a matter of translating the letters: 𝑥 → 𝑉𝑅, 𝑚 → 𝐿, 𝑏 → 𝑅,
𝑘 → 1/𝐶, 𝐵 → 𝐸0. So, 𝑉𝑅(𝑡) = 𝐴 cos(𝜔𝑡 − 𝜙(𝜔)) , where 

𝐸0𝑅𝜔 𝑅𝜔𝐸0 𝐸0𝐴 = = |𝑃 (𝑖𝜔)| = √(1/𝐶 − 𝐿𝜔2)2 + (𝑅𝜔)2 
√(1−𝐿𝐶𝜔2 

𝑅𝐶𝜔 )2 + 1 

and 
𝑅𝐶𝜔 𝜙(𝜔) = Arg(𝑃 (𝑖𝜔)) − 

𝜋 = tan−1 ( 2 
in the Q1 or Q4.2 1 − 𝐿𝐶𝜔2 ) − 

𝜋 
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Note, since the phase lag can be in Q4 we can actually have the output 𝑉𝑅 ahead of the 
input 𝐸 (i.e., it has a negative phase lag). 
(b) Open the applet: https://web.mit.edu/jorloff/www/OCW-ES1803/lrc.html. This 
applet models an LRC circuit. The input voltage is a superposition of sine waves. Play with 
the applet –be sure to learn how to vary 𝜔1 and 𝜔2 by dragging the sliders on the amplitude 
plot. 
Describe what happens to the amplitude response plot as 𝐿, 𝑅 and 𝐶 are varied. 
Solution: This is really the same as Problem 3(b): As 𝐿 increases the amplitude peak 
moves to the left and the graph gets a little spikier. 
As 𝑅 decreases the peak doesn’t move and the amplitude graph gets spikier. 
As 𝐶 increases the peak moves to the left. 
(c) An LRC circuit can be used as part of a simple AM radio tuner. In an AM radio 
broadcast the signal is given by 𝐴 cos(𝜔𝑡) where 𝜔 is the ‘carrier’ frequency (between 530 
and 1600 khz). To really carry information the amplitude 𝐴 must vary with time –this is 
the amplitude modulation– but, we will ignore this right here. 
A typical range of values for this simple variable capacitor AM radio tuner is 𝐿 ≈ 0.5 
microhenries, 𝑅 is the resistance in the wire (very small) and 𝐶 is between 0.02 and 0.2 
microfarads. To keep things simple, we will use different ranges, however the idea is the 
same. 
In the LRC Filter applet, set 𝜔1 = 1 and 𝑤2 = 4. Set the input amplitudes 𝑐1 and 𝑐2 to 1. 
Find settings for 𝐿, 𝑅 and 𝐶 so that the system filters out the 𝜔2 part of the signal i.e., the 
output looks (a lot) like a sine wave of frequency 𝜔1. Give your values for 𝐿, 𝑅 and 𝐶. 
Note. Since the frequencies in the applet are not in the AM range, your values for 𝐿, 𝑅,
𝐶 do not have to be in the same range as those in a typical variable capacitor tuner. 
Solution: One possibility is 𝐿 = 5.0,z 𝐶 = 0.2, 𝑅 = 0.33. This gives 𝑔(𝜔1) = 3.00 and
𝑔(𝜔2) = 0.05, i.e., the gain at 𝜔1 is 60 times that of 𝜔2. In any case, we want 𝐿𝐶 = 1, so 
the peak gain is at 𝜔1. As 𝑅 gets smaller, the ratio 𝑔(𝜔1)/𝑔(𝜔2) increases. In general, the 
smaller the value of 𝑅, the smaller the pass-band of the filter. 
(d) Since lots of stations are broadcasting at once, the antenna on your radio picks up a 
signal which is a superposition of lots of frequencies. The job of the tuner is to filter out 
all but the frequency you want. That is, the filter should pass a small band of frequencies 
around the desired one. 
Using the applet, set 𝐿 = 1, 𝑅 = 0.5. Now, vary 𝐶 and then explain why a variable capacitor 
circuit could be used as an AM radio tuner. 
Solution: As 𝐶 varies the spike in the amplitude graph moves. That is, changing the band 
of frequencies that can pass through the filter. The job of the radio tuner is to pass the 
frequency of one radio station and stop all the others. So we vary 𝐶 to ‘tune’ the circuit to 
the desired frequency. 
For amusement: check the ‘N term mode’ box. This changes the input to a sum of 𝑁 
sinusoids, with 𝑁 set by a slider. 
Set 𝑁 = 1, 𝐿 = 5.0, 𝑅 = 0.32, 𝐶 = 0.05, 𝑐 = 0.2 and 𝜔 = 2. You should see a sinusoidal 
input and a sinusoidal output. Now increase 𝑁 from 1 to 2 to 3, etc. The input changes as 

https://web.mit.edu/jorloff/www/OCW-ES1803/lrc.html
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more sinusoids are added. How does this change the output? Explain this in terms of the 
filter indicated by the gain graph. 
Solution: As 𝑁 increases the output stays basically the same. The additional sinusoids 
in the input have frequency 4, 6, 8, …. The gain curve shows that these frequencies have a 
tiny gain. This means that the input at these frequencies produces output with a negligible 
amplitude. 

Problem 6 (Topic 9) (15: 5,10,0) 
There is another damped spring-mass model which can be used for further comparison 
and contrast, namely the automobile suspension system given in a previous problem. It is 
equivalent to a spring-mass system which is driven through both the spring and dashpot 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑘𝑓(𝑡) + 𝑏𝑓′(𝑡). 

As before, we will take the input 𝑓(𝑡) = 𝐵 cos(𝜔𝑡). 
(a) Derive the formula for the amplitude response 𝑔(𝜔). As before, give the formal answer 
in terms of |𝑃 (𝑖𝜔)| and Arg(𝑃 (𝑖𝜔)) and the detailed answer in terms of 𝑚, 𝑏, 𝑘, 𝜔. 
Solution: We complexify before taking the derivative: 
𝑃 (𝐷)𝑧 = 𝐵𝑘𝑒𝑖𝜔𝑡 + 𝐵𝑏 (𝑒𝑖𝜔𝑡)′ = 𝐵(𝑘 + 𝑖𝑏𝜔)𝑒𝑖𝜔𝑡, 𝑥 = Re(𝑧). 
ERF: 

𝐵(𝑘 + 𝑖𝑏𝜔)𝑒𝑖𝜔𝑡 𝐵|𝑘 + 𝑖𝑏𝜔|𝑧𝑝(𝑡) = ⇒ 𝑥𝑝(𝑡) = cos(𝜔𝑡 − 𝜙(𝜔)). 𝑃 (𝑖𝜔) |𝑃 (𝑖𝜔)| 
Thus the gain is 

|𝑘 + 𝑖𝑏𝜔| 
√

𝑘2 + 𝑏2𝜔2
𝑔(𝜔) = =|𝑃 (𝑖𝜔)| √(𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 

. 

(b) Derive the formula for the practical resonant frequency. 
Does practical resonance always occur in this case? 

Solution: As before, we look for the minimum of 

1 (𝑘 − 𝑚𝜔2)2 + 𝑏2𝜔2 

1 + 
−2𝑘𝑚𝜔2 + 𝑚2𝜔4

ℎ(𝜔) = = = .𝑔(𝜔)2 𝑘2 + 𝑏2𝜔2 𝑘2 + 𝑏2𝜔2 

Computing ℎ′(𝜔) and setting it to 0 gives 𝜔 = 0 or 

√−2𝑘2𝑚2 + 
√

4𝑘4𝑚4 + 8𝑘3𝑚3𝑏2
𝑚2𝑏2𝜔4 + 2𝑘2𝑚2𝜔2 − 2𝑘3𝑚 = 0 ⇒ 𝜔𝑟 = .√

2𝑚𝑏 

Yes, since the term under the radical is always positive, the formula shows there is always 
a practical resonant frequency. 
(c) No question here, just a suggestion to look at the MIT mathlet: 
https://mathlets.org/mathlets/amplitude-and-phase-2nd-order-iii/ 

Solution: Nice animated visual of the spring-mass-dashpot-driver system. 

https://mathlets.org/mathlets/amplitude-and-phase-2nd-order-iii/
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Problem 7 (Topic 9) (Extra credit: 10: 5,5) 
The complex gain for a system is the gain for the complexified system. For example, consider 
the system 𝑃 (𝐷)𝑥 = 𝑘𝐵 cos(𝜔𝑡), where 𝐵 cos(𝜔𝑡) is the input. Using complex replacement, 
this becomes 𝑃 (𝐷)𝑧 = 𝑘𝐵𝑒𝑖𝜔𝑡. We can simplify this by writing 

𝑃 (𝐷)𝑧 = 𝑘𝐵𝑒𝑠𝑡, 
where 𝑠 is any complex number. Of course, when we want to solve 𝑃 (𝐷)𝑥 = 𝑘𝐵 cos(𝜔𝑡),

𝑘𝐵𝑒𝑠𝑡 

we take 𝑠 = 𝑖𝜔. The ERF says the solution to this is If we consider the input to be 

𝐵𝑒𝑠𝑡, then the complex gain is 𝐺(𝑠) = 
𝑘 

𝑃 (𝑠) . 
𝑃 (𝑠) 

. 

(This is also known as the system or transfer 

function.) 

The zero-pole diagram for a system is drawn in the complex plane. A pole for the complex 
gain is a (complex) value of 𝑠 where the denominator of 𝐺(𝑠) has a 0. A zero is a value of 
𝑠 where 𝐺(𝑠) = 0. 
(a) Draw a zero-pole diagram with a zero at 𝑠 = 0 and poles at 𝑠 = −2, 𝑠 = −1 ± 2𝑖. Write 
down a system, specifying the input and output, that has this as its zero-pole diagram. 
Solution: The zero-pole diagram is below with the answer to Part (b). Using the roots we 
get the characteristic polynomial. 

𝑃(𝑠) = (𝑠 + 2)(𝑠 + 1 − 2𝑖)(𝑠 + 1 + 2𝑖) = 𝑠3 + 4𝑠2 + 9𝑠 + 10. 
The system is of the form 𝑃 (𝐷)𝑥 = 𝑄(𝐷)𝑓 . The roots of 𝑄 are the zeros of the system, so
𝑄(𝑠) = 𝑠 works. A system with the specified zeros and poles is 

(𝐷3 + 4𝐷2 + 9𝐷 + 10)𝑥 = 𝐷𝑓. 

(b) This system has a practical resonant frequency. Indicate the approximate location of 
this on the pole diagram 

Solution: The resonant frequency is plotted on the imaginary axis. It should be near 
poles and away from zeros. The frequency 𝜔 = 2, plotted at 𝑖𝜔 = 2𝑖, is approximately the 
resonant frequency. (The actual resonant frequency is 𝜔 ≈ 2.01229.) 

Im(𝑠) 

𝑖𝜔𝑟 = 2𝑖 x 

x Re(𝑠)
−2 −1 1 2 

x 

zero-pole diagram for Part (a), with resonant frequency at 2𝑖. 
End of pset 4 solutions 
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