
ES.1803 Problem Set 4, Spring 2024

Part I (8 points)
Topic 9 (R, Feb. 29) Applications: frequency response.

Read: Topic 9 notes.
Hand in: Part I problems 9.1a, 8.3c, 9.3ab (posted with psets).

Part II (110 + 10 EC points)
Directions: Try each problem alone for 20 minutes. If, after this, you collaborate, you
must write up your solutions independently. Consulting old problem sets is not permitted.

Problems 1-5 are really one long problem, aimed at filling out and understanding the table
below. We will look at the following three DEs, modeling a damped spring-mass system
driven in various ways. Our main focus will be on the amplitude response (or gain) and
how it differs between the three systems.
System (i) 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑘𝑓(𝑡) (system driven through the spring)
System (ii) 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑏𝑓′(𝑡) (system driven through the dashpot)
System (iii) 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑚𝜔2𝑓(𝑡) (system driven by an unbalanced flywheel).

In all cases the input is 𝑓(𝑡) = 𝐵 cos(𝜔𝑡), where 𝐵 and 𝜔 are constants.

As usual, 𝑚, 𝑏 and 𝑘 are constants. The physical systems and the explanation of the models
are given for (i) and (ii) in the Topic 6 notes. The system in (iii) is taken from the textbook
by Edwards and Penney Section 2.6 (right before and in Problem 28).
Problem 1 (Topic 9) (15) Output, Gain and Phase Lag
As in Pset 3, Problem 2, let 𝑓(𝑡) = 𝐵 cos(𝜔𝑡) and 𝑃 (𝑠) = 𝑚𝑠2 + 𝑏𝑠 + 𝑘.
Either solve the DEs again or use your answers to Pset 3, Problem 2 to fill in the gain and
phase lag rows in the table. For the gain, write your answer both formally, in terms of
|𝑃 (𝑖𝜔)|, and in detail, in terms of 𝑚, 𝑏, 𝑘, and 𝜔. For the phase lag, you just need to give
the formal version in terms of Arg(𝑃 (𝑖𝜔)). (But be careful, not every phase lag is simply
Arg(𝑃 (𝑖𝜔)).)
Show your work on your paper and either print out the chart or make a copy and put the
final answer in that.
Now fill in the output row of the table. To make things simpler, you only need to write 𝑥(𝑡)
in terms of 𝑔(𝜔) and 𝜙(𝜔).
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System (i) System (ii) System (iii) 

Right-hand side 
of DE 
(Input = 𝑓(𝑡)) 

𝑘𝑓(𝑡) 𝑏𝑓′(𝑡) 𝑚𝜔2𝑓(𝑡) 

Output 𝑥(𝑡) 

Gain 𝑔(𝜔) 

Phase lag 𝜙(𝜔) 

𝜔𝑟 

Filter type Low pass Band pass High pass 

Table for Problems 1-5 

Problem 2 (Topic 9) (30: 10,10,10) Practical Resonance 
Hint: In all three parts of this problem, the maximum of 𝑔(𝜔) is at the same point as the 
minumum of 1/𝑔(𝜔)2, but the latter is easier to work with. Parts (a) and (c) require a small 
amount of calculus. Part (b) can be done with or without calculus. 
(a) Find the practical resonant frequency 𝜔𝑟 for System (i). Be sure to note the conditions 
when there is no resonance. Add 𝜔𝑟 to the table. 
(b) Repeat Part (a) for System (ii). 
(c) Repeat Part (a) for System (iii). 

Problem 3 (Topic 9) (15: 10,5) Visualization 
(a) Start the applet: https://mathlets.org/mathlets/amplitude-and-phase-2nd-order/. 
This is a visualization of System (i). Turn on the Bode and Nyquist plots. Play with the 
applet, be sure you can identify which plot shows the amplitude response. 

https://mathlets.org/mathlets/amplitude-and-phase-2nd-order/
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Note: The equation in the applet has 𝑚 = 1, i.e., the coefficient of 𝑥″ is 1. 
Note: When adjusting a slider, once you’ve selected the slider, you can get fine control 
using the arrow keys to move it. You can leave your mouse in the gain graph window to 
get a readout of the gain value. 
(i) Set 𝑘 = 1 and 𝑏 = 0.5. Use the graphs to determine if the system has a resonant 
frequency. If it does, give its value. Include a sketch of the amplitude response graph –no 
credit if you don’t label the axes. 
(ii) Set 𝑘 = 1 and 𝑏 = 1.5 and repeat Part (i) 

(iii) Check your answers in (i) and (ii) against your answer to Problem 2. 
(iv) Still with 𝑘 = 1 find the value of 𝑏 where practical resonance disappears. Check this 
with with your answer to Problem 2. 
(b) Start the applet: https://mathlets.org/mathlets/amplitude-and-phase-2nd-order-ii/. 
Check the Bode plots checkbox. Describe how the amplitude response changes as 𝑏 and 𝑘 
are varied. 

Problem 4 (Topic 9) (15: 5,5,5) Visualization and Filtering 
The systems in this pset can be considered filters. This means that they respond differently 
to input signals of different frequencies. For the frequencies where the gain is relatively 
large, we say the filter passes the frequency, for those where the gain is small, we say it 
stops the frequency. Here, we’ll see how the power of 𝜔 in the gain affects the shape of the 
filter. 
Start applet: https://web.mit.edu/jorloff/www/OCW-ES1803/mbk4.html This applet 
shows graphs for the system 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝜔𝑛 cos(𝜔𝑡), where 𝑛 is a set-able parameter. 
So the applet covers all the powers of 𝜔 we’ve seen in the previous problems. 
(a) Set 𝑛 = 0, 𝑚 = 0.5, 𝑏 = 1, 𝑘 = 1. Use the applet graphs to explain the use of the term 
‘low pass’ in the filter row of the table. 
(b) Set 𝑛 = 1, 𝑚 = 1.5, 𝑏 = 0.8, 𝑘 = 5. Use the applet graphs to explain the use of the 
term ‘band pass’ in the filter row of the table. (A range of frequencies is referred to as a 
band.) 

(c) Set 𝑛 = 2, 𝑚 = 1, 𝑏 = 1, 𝑘 = 1. Use the applet graphs to explain the use of the term 
‘high pass’ in the filter row of the table. 

Problem 5 (Topic 9) (20: 5,5,5,5) AM Radio Tuning and LRC Circuits 
An LRC circuit can be modeled using the same DE as in system (ii). Specifically, we often 
want to know the voltage 𝑉𝑅 across the resistor. This is modeled by the DE 

𝐿𝑉𝑅
″ + 𝑅𝑉𝑅

′ + 𝐶
1 𝑉𝑅 = 𝑅𝐸′. 

Where 𝐿 = inductance in henries, 𝑅 = resistance in ohms, 𝐶 = capacitance in farads and 
𝐸 = input EMF in volts. 
(a) Assume 𝐸 = 𝐸0 cos(𝜔𝑡) and use the table to give the periodic solution for 𝑉𝑅 in 
amplitude-phase form. 
(b) Open the applet: https://web.mit.edu/jorloff/www/OCW-ES1803/lrc.html. This 
applet models an LRC circuit. The input voltage is a superposition of sine waves. Play 

https://mathlets.org/mathlets/amplitude-and-phase-2nd-order-ii/
https://web.mit.edu/jorloff/www/OCW-ES1803/mbk4.html
https://web.mit.edu/jorloff/www/OCW-ES1803/lrc.html
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with the applet –be sure to learn how to vary 𝜔1 and 𝜔2 by dragging the sliders on the 
amplitude plot. 
Describe what happens to the amplitude response plot as 𝐿, 𝑅 and 𝐶 are varied. 
(c) An LRC circuit can be used as part of a simple AM radio tuner. In an AM radio 
broadcast the signal is given by 𝐴 cos(𝜔𝑡) where 𝜔 is the ‘carrier’ frequency (between 530 
and 1600 khz). To really carry information the amplitude 𝐴 must vary with time –this is 
the amplitude modulation– but, we will ignore this right here. 
A typical range of values for this simple variable capacitor AM radio tuner is 𝐿 ≈ 0.5 
microhenries, 𝑅 is the resistance in the wire (very small) and 𝐶 is between 0.02 and 0.2 
microfarads. To keep things simple, we will use different ranges, however the idea is the 
same. 
In the LRC Filter applet, set 𝜔1 = 1 and 𝑤2 = 4. Set the input amplitudes 𝑐1 and 𝑐2 to 
1. Find settings for 𝐿, 𝑅 and 𝐶 so that the system filters out the 𝜔2 part of the signal i.e., 
the output looks (a lot) like a sine wave of frequency 𝜔1. Give your values for 𝐿, 𝑅 and 𝐶. 
Note. Since the frequencies in the applet are not in the AM range, your values for 𝐿, 𝑅,
𝐶 do not have to be in the same range as those in a typical variable capacitor tuner. 
(d) Since lots of stations are broadcasting at once, the antenna on your radio picks up a 
signal which is a superposition of lots of frequencies. The job of the tuner is to filter out 
all but the frequency you want. That is, the filter should pass a small band of frequencies 
around the desired one. 
Using the applet, set 𝐿 = 1, 𝑅 = 0.5. Now, vary 𝐶 and then explain why a variable 
capacitor circuit could be used as an AM radio tuner. 
For amusement: check the ‘N term mode’ box. This changes the input to a sum of 𝑁 
sinusoids, with 𝑁 set by a slider. 
Set 𝑁 = 1, 𝐿 = 5.0, 𝑅 = 0.32, 𝐶 = 0.05, 𝑐 = 0.2 and 𝜔 = 2. You should see a sinusoidal 
input and a sinusoidal output. Now increase 𝑁 from 1 to 2 to 3, etc. The input changes as 
more sinusoids are added. How does this change the output? Explain this in terms of the 
filter indicated by the gain graph. 

Problem 6 (Topic 9) (15: 5,10,0) 
There is another damped spring-mass model which can be used for further comparison 
and contrast, namely the automobile suspension system given in a previous problem. It is 
equivalent to a spring-mass system which is driven through both the spring and dashpot 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑘𝑓(𝑡) + 𝑏𝑓′(𝑡). 

As before, we will take the input 𝑓(𝑡) = 𝐵 cos(𝜔𝑡). 
(a) Derive the formula for the amplitude response 𝑔(𝜔). As before, give the formal answer 
in terms of |𝑃 (𝑖𝜔)| and Arg(𝑃 (𝑖𝜔)) and the detailed answer in terms of 𝑚, 𝑏, 𝑘, 𝜔. 
(b) Derive the formula for the practical resonant frequency. 
Does practical resonance always occur in this case? 

(c) No question here, just a suggestion to look at the MIT mathlet: 
https://mathlets.org/mathlets/amplitude-and-phase-2nd-order-iii/ 

https://mathlets.org/mathlets/amplitude-and-phase-2nd-order-iii/
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Problem 7 (Topic 9) (Extra credit: 10: 5,5) 
The complex gain for a system is the gain for the complexified system. For example, consider 
the system 𝑃 (𝐷)𝑥 = 𝑘𝐵 cos(𝜔𝑡), where 𝐵 cos(𝜔𝑡) is the input. Using complex replacement, 
this becomes 𝑃 (𝐷)𝑧 = 𝑘𝐵𝑒𝑖𝜔𝑡. We can simplify this by writing 

𝑃 (𝐷)𝑧 = 𝑘𝐵𝑒𝑠𝑡, 

where 𝑠 is any complex number. Of course, when we want to solve 𝑃 (𝐷)𝑥 = 𝑘𝐵 cos(𝜔𝑡),
𝑘𝐵𝑒𝑠𝑡 

we take 𝑠 = 𝑖𝜔. The ERF says the solution to this is 𝑃 (𝑠) 
. If we consider the input to be 

𝑘 𝐵𝑒𝑠𝑡, then the complex gain is 𝐺(𝑠) = 𝑃 (𝑠) . (This is also known as the system or transfer 

function.) 

The zero-pole diagram for a system is drawn in the complex plane. A pole for the complex 
gain is a (complex) value of 𝑠 where the denominator of 𝐺(𝑠) has a 0. A zero is a value of 
𝑠 where 𝐺(𝑠) = 0. 
(a) Draw a zero-pole diagram with a zero at 𝑠 = 0 and poles at 𝑠 = −2, 𝑠 = −1±2𝑖. Write 
down a system, specifying the input and output, that has this as its zero-pole diagram. 
(b) This system has a practical resonant frequency. Indicate the approximate location of 
this on the pole diagram 

End of pset 4 
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