
ES.1803 Problem Set 7, Spring 2024 Solutions 

Part II (113 + 10 extra-credit points) 

Problem 1 (Topic 20) (10) 
Solve the initial value problem 

2𝑥‴ + 12𝑥″ + 22𝑥′ + 12𝑥 = 𝛿(𝑡) + 𝑢(𝑡)𝑒𝑡, with rest initial conditions. 

for 𝑡 < 0 Here 𝑢(𝑡) is the unit step function. This means that 𝑢(𝑡)𝑒𝑡 = {0 .𝑒𝑡 for 𝑡 > 0 

Hint: the characteristic roots are small negative integers. 
Solution: The delta function changes the initial conditions at 𝑡 = 0. So we have two cases: 
Since 𝑃 (𝐷) is the same in both cases, first we find the general homogeneous solution. Using 
the hint we find the characteristic roots are 𝑟 = −1, −2, −3. So the homogeneous solution 
is 

𝑥ℎ(𝑡) = 𝑐1𝑒−𝑡 + 𝑐2𝑒−2𝑡 + 𝑐3𝑒−3𝑡. 

Case 𝑡 < 0: 2𝑥‴ + 12𝑥″ + 22𝑥′ + 12𝑥 = 0; 𝑥(0−) = 0, 𝑥′(0−) = 0, 𝑥″(0−) = 0. 
This has solution: 𝑥(𝑡) = 0. 
Case 𝑡 > 0: The delta function changes the rest pre-initial conditions to post-initial condi-
tions. The post-initial conditions are 

𝑥(0+) = 𝑥(0−) = 0, 𝑥′(0+) = 𝑥′(0−) = 0, 𝑥″(0+) = 𝑥″(0−) + 1/2 = 1/2. 

The DE in this case is 
2𝑥‴ + 12𝑥″ + 22𝑥′ + 12𝑥 = 𝑒𝑡. (1) 

A particular solution to Equation 1 is 𝑥𝑝(𝑡) = 𝑒𝑡/𝑃 (1) = 𝑒𝑡/48. 
Therefore, the general solution to Equation 1 is 

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡) = 48
𝑒𝑡 

+ 𝑐1𝑒−𝑡 + 𝑐2𝑒−2𝑡 + 𝑐3𝑒−3𝑡. 

We use the post-initial conditions to solve for 𝑐𝑗. The 3 equations are 

𝑐1 + 𝑐2 + 𝑐3 + 1/48 = 0 1 1 1 𝑐1 −1/48
⇔ ⎡ ⎤ ⎡ ⎤ = ⎡ ⎤−𝑐1 − 2𝑐2 − 3𝑐3 + 1/48 = 0 ⎢−1 −2 −3⎥ ⎢𝑐2⎥ ⎢−1/48⎥

𝑐1 + 4𝑐2 + 9𝑐3 + 1/48 = 1/2 ⎣ 1 4 9⎦ ⎣𝑐2⎦ ⎣23/48⎦ 

We solved this using row reduction: 𝑐1 = 1/8, 𝑐2 = −1/3, 𝑐3 = 3/16. So, 

for 𝑡 < 0 𝑥(𝑡) = {0 
𝑒𝑡 

48 + 1
8𝑒−𝑡 − 1

3𝑒−2𝑡 + 16
3 𝑒−3𝑡 for 𝑡 > 0. 

Problem 2 (Topic 20) (20: 5,5,5,5) Lemmings really are adorable 
Back in your impulsive youth you helped a population of lemmings avoid extinction. But 

1 



{{

{{

2 ES.1803 Problem Set 7, Spring 2024 Solutions 

your methods led to some tedious differential equations that no one liked solving. Now that 
you’re older and wiser and truly understand impulses, you are ready to help the lemmings 
again. 

Image from Wikimedia, In public domain. Also see Wikipedia: Lemming 

Recall that the population 𝑦 of lemmings is modeled by 

𝑦′ + 𝑘𝑦 = 𝑓(𝑡), 
where 𝑡 is measured in years, 𝑘 = 1.0 is the growth rate and 𝑓(𝑡) is the input function. 
(a) Your youthful input function could be described as a periodic box. 

⎧ℎ
1 if 0 < 𝑡 < ℎ 

0 if ℎ < 𝑡 < 1{
1𝑓ℎ(𝑡) = if 1 < 𝑡 < 1 + ℎ⎨ℎ
0 if 1 + ℎ < 𝑡 < 2

{… .⎩ 

(i) Graph this function for ℎ = 1/2. 
(ii) How many units of lemmings were added in each yearly cycle? 

Solution: (i) 

𝑓ℎ(𝑡) 

𝑡 0.5 1 1.5 2 2.5 3 3.5 4 

2 

⋯ 

Periodic box 𝑓ℎ(𝑡) with ℎ = 1/2. 
(ii) The area under each box is 1, so 1 unit of lemmings were added each year. 
(b) One problem with the input in Part (a) is that you had to spend half the year on the 
tundra. Another was that solving the DE with 𝑓ℎ(𝑡) as input took about half a year and 
almost made you quit ES.1803. So you decide to let ℎ go to 0. That is, every year on 
January 1 you’ll bring a truckload of lemmings (1 truckload = 1 unit of lemmings) to the 
wildlife reserve and release them all at once. (You may choose to stay a while and hope the 
Northern Lights are visible.) 

https://commons.wikimedia.org/wiki/File:Tunturisopuli_Lemmus_Lemmus.jpg
https://en.wikipedia.org/wiki/Lemming
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Call the new input function 𝑓𝐼(𝑡). Give its formula in terms of delta functions and sketch 
its graph. (Let 𝑡 = 0 be January 1, 2023.) 

Solution: As ℎ goes to 0, the boxes get thinner and taller. The area remains one, so in 
the limit each box becomes a delta function. 

𝑓𝐼(𝑡) = 𝛿(𝑡) + 𝛿(𝑡 − 1) + 𝛿(𝑡 − 2) + 𝛿(𝑡 − 3) + … 

Here is the graph. Each spike represents an impulse, the 1 next to each spike indicates the 
size of the impulse, i.e., the ‘area’ under the spike. (The function is 0 everywhere except at 
the spikes.) 

𝑓𝐼(𝑡) 

𝑡 

1 1 1 1 

1 2 3 4 

⋯ 

Periodic impulse function, 𝑓𝐼(𝑡) 

(c) In your absence the lemming population dwindled to nothing. So, when you started 
inputting lemmings, the intial population was 0. Solve the DE 𝑦′ + 𝑘𝑦 = 𝑓𝐼(𝑡) with rest 
initial conditions. 
Solution: We show two methods of solving this. The first is to work one interval at a time 
using a series of pre and post-initial conditions. As usual, on each of the intervals between 
the spikes the input 𝑓𝐼(𝑡) = 0. 
On 𝑡 < 0: DE is 𝑥′ + 𝑘𝑥 = 0; IC = 𝑥(0−) = 0. 

The solution to this is easily found to be on 𝑡 < 0, 𝑥(𝑡) = 0. 
At the end of this interval, we have 𝑥(0−) = 0 (to be used in the next interval). 
On 0 < 𝑡 < 1: DE is 𝑥′ + 𝑘𝑥 = 0; The unit impulse at 𝑡 = 0 gives the IC = 𝑥(0+) = 
𝑥(0−) + 1 = 1. 

The solution to this is easily found to be on 0 < 𝑡 < 1, 𝑥(𝑡) = 𝑒−𝑘𝑡 . 

At the end of this interval, we have 𝑥(1−) = 𝑒−𝑘 (to be used in the next interval). 
On 1 < 𝑡 < 2: DE is 𝑥′ + 𝑘𝑥 = 0; The unit impulse at 𝑡 = 1 gives the IC = 𝑥(1+) = 
𝑥(1−) + 1 = 𝑒−𝑘 + 1. 

The solution to this is easily found to be on 1 < 𝑡 < 2, 𝑥(𝑡) = (𝑒−𝑘 + 1)𝑒−𝑘(𝑡−1). 
At the end of this interval, we have 𝑥(2−) = (𝑒−𝑘 + 1)𝑒−𝑘 = 𝑒−2𝑘 + 𝑒−𝑘 (to be used in the 
next interval). 
On 2 < 𝑡 < 3: DE is 𝑥′ + 𝑘𝑥 = 0; The unit impulse at 𝑡 = 2 gives the IC = 𝑥(2+) = 
𝑥(2−) + 1 = 𝑒−2𝑘 + 𝑒−𝑘 + 1. 

The solution to this is easily found to be on 2 < 𝑡 < 3, 𝑥(𝑡) = (𝑒−2𝑘 + 𝑒−𝑘 + 1)𝑒−𝑘(𝑡−2). 



{{{

{{{

{{

{{

4 ES.1803 Problem Set 7, Spring 2024 Solutions 

The pattern is now obvious! 

⎧0 for 𝑡 < 0 

𝑒−𝑘𝑡 for 0 < 𝑡 < 1
{(𝑒−𝑘 + 1)𝑒−𝑘(𝑡−1) for 1 < 𝑡 < 2𝑥(𝑡) = ⎨(𝑒−2𝑘 + 𝑒−𝑘 + 1)𝑒−𝑘(𝑡−2) for 2 < 𝑡 < 3 

(𝑒−3𝑘 + 𝑒−2𝑘 + 𝑒−𝑘 + 1)𝑒−𝑘(𝑡−3) for 3 < 𝑡 < 4
{…⎩ 

Our second method is to use the superposition principle. First we solve 

𝑥′
𝑛 + 𝑘𝑥𝑛 = 𝛿(𝑡 − 𝑛); 𝑥(0−) = 0 

As usual, because of the impulse at 𝑡 = 𝑛, we divide the problem into two intervals. 
On 𝑡 < 𝑛: DE is 𝑥′

𝑛 + 𝑘𝑥𝑛 = 0; IC is 𝑥(0−) = 0. 

The solution to this is easily found to be on 𝑡 < 𝑛, 𝑥𝑛(𝑡) = 0. 
At the end of this interval, we have 𝑥(𝑛−) = 0 (to be used in the next interval). 
On 𝑛 < 𝑡: DE is 𝑥′+𝑘𝑥 = 0; The unit impulse at 𝑡 = 𝑛 gives the IC = 𝑥(𝑛+) = 𝑥(𝑛−)+1 = 
1. 
The solution to this is easily found to be on 𝑛 < 𝑡, 𝑥(𝑡) = 𝑒−𝑘(𝑡−𝑛) . 

Now, since the input 𝑓𝐼(𝑡) = ∑ 𝛿(𝑡 − 𝑛) the sum of the 𝑥𝑛 is a solution to the DE
𝑥′ +𝑘𝑥 = 𝑓𝐼 . It is easy to check that this sum satisfies the rest initial conditions (since each 
term in it does). That is. 

𝑥(𝑡) = 𝑥0(𝑡) + 𝑥1(𝑡) + 𝑥2(𝑡) + … 

⎧0 for 𝑡 < 0 

𝑒−𝑘𝑡 + 𝑒−𝑘(𝑡−1) for 1 < 𝑡 < 2{
𝑒−𝑘𝑡 + 𝑒−𝑘(𝑡−1) + 𝑒−𝑘(𝑡−2)= for 2 < 𝑡 < 3⎨
𝑒−𝑘𝑡 + 𝑒−𝑘(𝑡−1) + 𝑒−𝑘(𝑡−2) + 𝑒−𝑘(𝑡−3) for 3 < 𝑡 < 4

{…⎩ 

You can check that both methods give the same answer! 
(d) Now we’ll look at this graphically using a mathlet. Open https://mathlets.org/ 
mathlets/periodic-box/. 
As usual, start the applet and familiarize yourself with its controls. Set 𝑘 = 1 and ℎ = 0.5. 
(i) What happens to the response from rest as ℎ goes to 0? 

(ii) What happens to the impulse train response as 𝑡 gets large? 

Solution: (i) As ℎ → 0 the response from rest goes asymptotically to the impulse train 
response. 
(ii) As 𝑡 gets big: response from rest goes asymptotically to the periodic solution. 

Problem 3 (Topic 21) (10: 5,5) 
Without computing any integrals give the Fourier series for the following 

https://mathlets.org/mathlets/periodic-box/
https://mathlets.org/mathlets/periodic-box/
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(a) 𝑓(𝑡) = sin(𝑡 − 𝜋/4) (period 2𝜋). 
√

2 
√

2Solution: 𝑓(𝑡) = sin(𝑡−𝜋/4) = sin(𝑡) cos(𝜋/4)−cos(𝑡) sin(𝜋/4) = sin(𝑡) − cos(𝑡).2 2 

(b) 𝑓(𝑡) = 𝑠𝑞(𝑡 − 𝜋/2), where 𝑠𝑞(𝑡) is the odd square wave of period 2𝜋 and amplitude 1. 
(You should use the known series for 𝑠𝑞(𝑡).) 

Solution: The Topic 21 notes give 

4 sin(𝑛𝑡) 4 sin(𝑛(𝑡 − 𝜋/2)) 𝑠𝑞(𝑡) = ⇒ 𝑓(𝑡) = .𝜋 ∑ 𝑛 𝜋 ∑ 𝑛 𝑛 𝑜𝑑𝑑 𝑛 𝑜𝑑𝑑 

This expression for 𝑓(𝑡) is good enough for everything we do in 18.03, but, to put it into 
official Fourier series form, we rewrite sin(𝑛(𝑡 − 𝜋/2)) as follows. 

sin(𝑡 − 𝜋/2) = − cos(𝑡), sin(3(𝑡 − 𝜋/2)) = cos(3𝑡) 

sin(5(𝑡 − 𝜋/2)) = − cos(5𝑡) sin(7(𝑡 − 𝜋/2)) = cos(7𝑡) etc. 

4 − 
cos(5𝑡) + 

cos(7𝑡) Thus, 𝑓(𝑡) = 𝜋 
(− cos(𝑡) + 

cos(3𝑡) − …) 3 5 7 

Problem 4 (Topic 21) (28: 5,5,3,5,7,3) 
if 0 < 𝑡 < 1 (a) Let 𝑓(𝑡) be the period 2 square wave, where, over one period, 𝑓(𝑡) = {2 

0 if 1 < 𝑡 < 2 

Taking the jumps into account, compute the generalized derivative ℎ(𝑡) = 𝑓′(𝑡). 
Solution: Here is the graph of 𝑓(𝑡) 

t

f(t)

−2 −1 1 2

2

The regular part of 𝑓′ is 0. Jumps in 𝑓(𝑡) lead to 𝛿 functions in its derivative. So, 
∞

ℎ(𝑡) = … − 2𝛿(𝑡 + 1) + 2𝛿(𝑡) − 2𝛿(𝑡 − 1) + 2𝛿(𝑡 − 2) + … = 2 ∑ (−1)𝑛𝛿(𝑡 − 𝑛) 
𝑛=−∞ 

(b) Starting from the Fourier series for 𝑓(𝑡), find the Fourier series for ℎ(𝑡). 
Solution: The known Fourier series for the odd, amplitude 1, period 2𝜋 square wave is 

sin(𝑛𝑡) . Thus, 𝜋
4 ∑ 𝑛 𝑛 𝑜𝑑𝑑 

sin(𝑛𝜋𝑡) 𝑓(𝑡) = 1 + 
4 .𝜋 ∑ 𝑛 𝑛 𝑜𝑑𝑑 

Term-by-term differentiation gives ℎ(𝑡) = 4 ∑ cos(𝑛𝜋𝑡). 
𝑛 𝑜𝑑𝑑 
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(c) On the same axes, sketch the graphs of ℎ(𝑡) and the first term in its Fourier series. 
Solution: Here are the graphs. The numbers next to the spikes indicate the ‘area’ under 
the spike. 

t
−1

−2

1

−2

3

−2

−2

2

0

2

2

2
4

−4

(d) Compute the coefficients of the Fourier series of ℎ(𝑡) directly using the integral formulas 
and show they are the same as in the series found in Part (b). 
Solution: In Part (a) we found 

∞
ℎ(𝑡) = 2 ∑ (−1)𝑛𝛿(𝑡 − 𝑛). 

𝑛=−∞ 

To avoid worrying about endpoints for delta functions we’ll compute the Fourier coefficients 
by integrating over the one period interval (−1/2, 3/2). In this interval most of the terms 
in the series sum for ℎ(𝑡) are zero. We have 

ℎ(𝑡) = 2𝛿(𝑡) − 2𝛿(𝑡 − 1) for −1/2 < 𝑡 < 3/2. 

The integrals are now easy to compute. 

3/2 3/2
𝑎0 = ∫ ℎ(𝑡) 𝑑𝑡 = ∫ 2(𝛿(𝑡) − 2𝛿(𝑡 − 1)) 𝑑𝑡 = 0. 

−1/2 −1/2 

3/2 3/2
𝑎𝑛 = ∫ ℎ(𝑡) cos(𝑛𝜋𝑡) 𝑑𝑡 = ∫ 2(𝛿(𝑡) − 2𝛿(𝑡 − 1)) cos(𝑛𝜋𝑡) 𝑑𝑡 

−1/2 −1/2 

= {4 if 𝑛 odd = 2 cos(0) − 2 cos(𝑛𝜋) = 2 − 2(−1)𝑛 

0 if 𝑛 even. 

Likewise, 

3/2 3/2
𝑏𝑛 = ∫ ℎ(𝑡) sin(𝑛𝜋𝑡) 𝑑𝑡 = ∫ 2(𝛿(𝑡) − 2𝛿(𝑡 − 1)) sin(𝑛𝜋𝑡) 𝑑𝑡 = 2 sin(0) − 2 sin(𝜋) = 0. 

−1/2 −1/2 

Thus, ℎ(𝑡) = 4 cos(𝜋𝑡) + 4 cos(2𝜋𝑡) + … = 4 ∑ cos(𝑛𝜋𝑡). (The same as in Part (b).) 
𝑛 𝑜𝑑𝑑 

(e) Solve 𝐿𝑥 = 𝑥′ + 9𝑥 = ℎ(𝑡). 
Solution: Replacing ℎ(𝑡) by its Fourier series, we have to solve 𝑥′ + 9𝑥 = 4 ∑ cos(𝑛𝜋𝑡). 

𝑛 𝑜𝑑𝑑 
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Characteristic polynomial: 𝑃(𝑟) = 𝑟 + 9. So, 

𝑃 (𝑖𝑛𝜋) = 9+𝑖𝑛𝜋; |𝑃 (𝑖𝑛𝜋)| = √81 + 𝑛2𝜋2; Arg(𝑃 (𝑖𝑛𝜋)) = 𝜙(𝑛) = tan−1(𝑛𝜋/9) in Q1. 
Individual terms: 𝑥′

𝑛 + 9𝑥𝑛 = 4 cos(𝑛𝜋𝑡). Using the SRF: 
4𝑥𝑛,𝑝(𝑡) = √

81 + 𝑛2𝜋2 
cos(𝑛𝜋𝑡 − 𝜙(𝑛)). 

Now, using superposition, we get 

𝑥𝑝(𝑡) = 𝑥1,𝑝(𝑡) + 𝑥3,𝑝(𝑡) + … 

4 4= √
81 + 𝜋2 

cos(𝜋𝑡 − 𝜙(1)) + √
81 + 9𝜋2 

cos(3𝜋𝑡 − 𝜙(3)) + … 

1= 4 ∑ √
81 + 𝑛2𝜋2 

cos(𝑛𝜋𝑡 − 𝜙(𝑛)). 
𝑛 odd 

(f) Does the solution in Part (e) contain any near resonant terms? 

Solution: No. The gain is a strictly decreasing function, so there are no resonant frequen-
cies. Thus there are no terms in the solution that are near a resonant frequency. (There 
are never near resonant terms in the first-order case.) 

Problem 5 (Topic 22) (15: 5,5,5) 
⎧2𝑡2 if 0 ≤ 𝑡 < 1
{ 2 

Let 𝑓(𝑡) = 1 − 𝑡 if 1
2 ≤ 𝑡 < 1 ⎨{⎩0 if 1 ≤ 𝑡 < 2. 

For each of the following, sketch the graph of its Fourier series over 3 full periods. 
(a) 𝑓�̃� (𝑡), the even periodic extension of 𝑓(𝑡) with period 4. 
Solution: See below. 
(b) 𝑓�̃� (𝑡), the odd periodic extension of 𝑓(𝑡) with period 4. 
Solution: See below. (For Part (a) we only plotted 2 periods for space reasons.) 

(c) ̃𝑓(𝑡), the periodic extension of 𝑓(𝑡) with period 2. 
Solution: See below. 

𝑡 
−2 −1 1 2 3 4 5 6 

−0.5 

0.5 

𝑡 
−2 −1 1 2 3 4 5 6 

−0.5 

0.5 

(a) Even extension (b) Odd extension 

𝑡 
−2 −1 1 2 3 4 

−0.5 

0.5 

(a) Periodic extension 



8 ES.1803 Problem Set 7, Spring 2024 Solutions 

Problem 6 (Topic 22) (30) See the Fourier Sound lab exercise posted alongside this 
pset. 
Solution: See separate write up of the Fourier Sound lab exercise. 

Extra credit 1 (Topic 17) (10) 
(There isn’t space for this problem. Since we don’t want to interrupt the story, we’ve made 
it an extra credit problem.) 

Continuing the story of Armand and Babette: Armand and Babette, exhausted from their 
seemingly endless cycles of attraction and repulsion, decide nevertheless to give it one more 
try, and so are off to Armadillo couples therapy. The Therapist admits that, given their 
current emotional patterns (which will be impossible to change quickly), it doesn’t look good 
for a long-term stable happy relationship, but suggests a short-term external intervention to 
see if a break in the pattern might give them some time to work on the deeper issues. The 
Therapist therefore sends them to the Wizard, who concocts a special potion for them. Again 
let 𝑥(𝑡) and 𝑦(𝑡) denote the time-varying levels of A’s attraction to B and B’s attraction to A 
respectively. The “interaction coefficients” in the rate DEs for 𝑥(𝑡) and 𝑦(𝑡) are unchanged, 
since their emotional patterns are still the same; the effect of the Wizard’s intervention on 
the rates of change of their feelings for each other is then to add the “external” functions 
𝑓1(𝑡) and 𝑓2(𝑡) respectively to these DEs, so that we get 

𝑥′ = 𝑥 − 𝑦 + 𝑓1(𝑡) 𝑦′ = 2𝑥 − 𝑦 + 𝑓2(𝑡). 
To ease your computational load, we’ll tell you that the corresponding homogeneous system 
has solution 

[𝑥 cos 𝑡 sin 𝑡 
cos 𝑡 + sin 𝑡] + 𝑐2 [𝑦] = 𝑐1 [ − cos 𝑡 + sin 𝑡] . 

Whatever the Wizard intended, the effect on A and B of their scheduled ingestion of the 
potion turns out to be 𝑓1(𝑡) = 3 and 𝑓2(𝑡) = −3. 
So that apparently Armand has a good reaction and Babette a bad reaction to it. 
Guess a constant solution to find a particular solution to this inhomogeneous system. 
What is the effect of the potion on A and B’s situation? Is it positive or negative? 

−1Solution: We have the equation x ′ = [1 
−1] x + [−3

3 ] . We already know the homoge-2 
neous solution for this system and the problem only asks us to find a particular solution. 

= [𝑎1 [0 −1Try the solution xp 𝑎2
] . Substitution gives 0] = [1

2 −1] [𝑎
𝑎

1
2
] + [−3

3 ]. 

−1−1 [ 3 1Thus, [𝑎1] = − [1 
−3] = − [−1 

1] [ 
3 

9] . 𝑎2 2 −1] −2 −3] = [6 

We have found a particular solution xp(𝑡) = [6
9] . 

The constant solution is an equilibrium. The homogeneous solution given above is purely 
oscillatory. So the general solution oscillates around this equilibrium. A positive equilibrium 
is better than their old oscillation around the equilibrium (0, 0). As long as the oscillations 
aren’t too large, they could stay in love forever. I would call the result positive! 
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Manipulated image from Wiki Media, License: CC BY 2.0 

End of pset 7 solutions 

https://commons.wikimedia.org/wiki/File:Nine-banded_Armadillo_(Dasypus_novemcinctus)_(37649606094).jpg
https://creativecommons.org/licenses/by/2.0/deed.en
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