
ES.1803 Problem Set 8, Spring 2024 Solutions 

Part II 110 + 5 EC points 

Problem 1 (Topic 24) (Armand and Babette are reprogrammed) (30: 10,5,10,5) 
Having given up hope that the Therapist or Wizard could help them, Armand and Babette 
turned to a Pharmacist. She gave them a drug (patent pending) that completely repro-
grammed their emotions. 
(a) Unfortunately the drug’s effects are permanent and set their system to 

𝑥′ = −2𝑥 + 𝑦 𝑦′ = 𝑥 − 2𝑦 

Solve this system and describe what will happen to their love if nothing more is done. 
1Solution: In matrix form the system is [𝑥

𝑦′
′
] = [−2 

−2] [𝑥
𝑦] . 1 

The characteristic equation is 𝜆2 +4𝜆+3 = 0. This has roots 𝜆 = −1, −3 with eigenvectors 

[1
1] and [−1

1 ]. So the general solution is 

[𝑥
𝑦] = 𝑐1𝑒−𝑡 [1

1] + 𝑐2𝑒−3𝑡 [−1
1 ] . 

Since both eigenvalues are negative, their love appears doomed to dwindle to nothing. 
(b) The Pharmacist gave them another drug in a time release capsule. This drug boosts the 
attraction they each feel for each other. Unfortunately Armand did not tolerate the drug – 
their armour dried out and they became listless. So only Babette could take it. 
Being DE Armadillos, one of their days is 2𝜋 units of time. Babette takes the drug once each 
day. Between the time release and her body’s metabolism, the amount in her bloodstream 
varies and the boost in attraction follows a period 2𝜋 triangle wave 

for −𝜋 < 𝑡 < 0 tri(𝑡) = {−𝑡 
𝑡 for 0 < 𝑡 < 𝜋 

Thus the equations of their attraction are: [𝑥
𝑦′

′
] = [−2 

−2
1 ] [𝑥

𝑦] + [ 
0

1 tri(𝑡)]. 

Use the top equation to eliminate 𝑦 from the bottom equation and get equations 

𝑥″ + 4𝑥′ + 3𝑥 = tri(𝑡), 𝑦 = 𝑥′ + 2𝑥. 

Solution: Written out, the two equations are 

𝑥′ = −2𝑥 + 𝑦 

𝑦′ = 𝑥 − 2𝑦 + tri(𝑡) 

The top equation can be solved for 𝑦: 𝑦 = 𝑥′ + 2𝑥. We then substitute this in the bottom 
equation to eliminate 𝑦: 

𝑦′ = 𝑥″ + 2𝑥′ = 𝑥 − 2(𝑥′ + 2𝑥) + tri(𝑡). 

1 
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A little bit of algebra gives: 𝑥″ + 4𝑥′ + 3𝑥 = tri(𝑡). This and the equation 𝑦 = 𝑥′ + 2𝑥 are 
the two equations we were asked to derive. 
(c) Find the general solution to these equations for 𝑥 and 𝑦. 
Solution: Using the Fourier series for tri(𝑡) the equation for 𝑥 can be written as 

𝜋 cos(𝑛𝑡)𝑥″ + 4𝑥′ + 3𝑥 = 2 − 4 .𝜋 ∑ 𝑛2
𝑛 odd 

The characteristic roots are −1 and −3, so the homogeneous solution is 𝑥ℎ(𝑡) = 𝑐1𝑒−𝑡 +
𝑐2𝑒−3𝑡. 
We find a particular solution by solving with each term of the Fourier series and using 
linearity. With this in mind, solve 

𝑥″
𝑛 + 4𝑥′

𝑛 + 3𝑥𝑛 = cos(𝑛𝑡). 

The sinusoidal response formula gives a solution: 𝑥𝑛,𝑝(𝑡) = 
cos(𝑛𝑡 − 𝜙(𝑛)) , where |𝑃 (𝑖𝑛)| 

|𝑃 (𝑖𝑛)| = √(3 − 𝑛2)2 + 16𝑛2 and 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = tan−1(4𝑛/(3 − 𝑛2)) in Q1 or Q2. 

We also solve 𝑥″
0 + 4𝑥′

0 + 3𝑥0 = 𝜋/2 to get 𝑥0,𝑝(𝑡) = 𝜋/6. 
Now using linearity we get a particular solution for 𝑥: 

𝜋 𝜋 cos(𝑛𝑡 − 𝜙(𝑛)) 𝑥𝑝(𝑡) = 6 − 4 𝑥𝑛,𝑝 = 6 − 4 
𝜋 ∑ 𝑛2 𝜋 ∑ 

𝑛 odd 𝑛 odd 𝑛2√(3 − 𝑛2)2 + 16𝑛2 

The general solutions are 

cos(𝑛𝑡 − 𝜙(𝑛)) 𝑥 = 𝑥ℎ + 𝑥𝑝 = 𝑐1𝑒−𝑡 + 𝑐2𝑒−3𝑡 + 
𝜋
6 

− 
4 
𝜋 

∑ 
𝑛2√(3 − 𝑛2)2 + 16𝑛2𝑛 odd 

2 cos(𝑛𝑡 − 𝜙(𝑛)) − 𝑛 sin(𝑛𝑡 − 𝜙(𝑛)) 𝑦 = 𝑥′ + 2𝑥 = 𝑐1𝑒−𝑡 − 𝑐2𝑒−3𝑡 + 
𝜋
3 

− 
4 
𝜋 

∑ 
𝑛 odd 𝑛2√(3 − 𝑛2)2 + 16𝑛2 

(d) Give a sketch that approximates the graphs of the periodic solutions for 𝑥 and 𝑦. Be 
sure to explain how you got the approximation. Finally, say if the drug has a beneficial 
effect. 
Solution: For the periodic solution, we ignore the transient terms. The Fourier coefficients 
decay fast: like 1/𝑛4 for 𝑥, and like 1/𝑛3 for 𝑦 . Writing out the first few terms of each 
expansion we get: 

𝜋 𝑥𝑝(𝑡) = 6 
− 𝜋

4 (0.224 cos(𝑡 − 𝜙(1)) + 0.008 cos(3𝑡 − 𝜙(3)) + 0.001 cos(5𝑡 − 𝜙(5)) + …) 

𝜋 𝑦𝑝(𝑡) = 3 
− 𝜋

4 (0.447 cos(𝑡 − 𝜙(1)) − 0.224 sin(𝑡 − 𝜙(1)) + 0.017 cos(3𝑡 − 𝜙(3)) − 0.025 sin(3𝑡 − 𝜙(3)) 

+ 0.003 cos(5𝑡 − 𝜙(5)) − 0.007 sin(5𝑡 − 𝜙(5)) + …) 
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For sketching approximations of the graphs, we can ignore the 𝑛 ≥ 3 terms. We plotted: 

𝑥(𝑡) ≈ 
𝜋
6 

− 𝜋
4 (0.224 cos(𝑡 − 𝜙(1))) 

𝑦(𝑡) ≈ 
𝜋
3 

− 𝜋
4 (0.447 cos(𝑡 − 𝜙(1)) − 0.224 sin(𝑡 − 𝜙(1))) 

t

x, y

π/2 π 3π/2 2π 5π/2 3π 7π/2

0.5

1.0

1.5 Babette: y(t)

Armand: x(t)

The drug causes the attraction of each one to the other to stay in the positive range. 
Assuming they are truly meant for each other, this is beneficial! 

Problem 2 (15 points) 
Read the Topic 25 notes. You’ll be glad you did. The answer to this problem should be ‘Yes, 
I read the notes. One thing I didn’t understand was: (fill in the blank).’ 
Solution: Very informative! 

Problem 3 (Topic 25) (20: 5,5,5,5) Linearity and homogeneity 
We’ve used superposition when solving the wave and heat equations. In this problem you’ll 
prove that the equations and boundary conditions are linear. Each answer should take only 
1 or 2 lines. The important point here is to understand why we care about this. 
Consider the heat equation 

𝑢𝑡 = 𝑐 𝑢𝑥𝑥, where 𝑐 > 0 is a constant. (H) 

Also consider the homogeneous boundary conditions 

𝑢(0, 𝑡) = 0 and 𝑢𝑥(𝐿, 𝑡) = 0. (HBC) 

Finally, let 𝒯 be the partial differential operator defined by 

𝒯𝑢 = 𝑢𝑡 − 𝑐𝑢𝑥𝑥. 

(a) Show the heat equation (H) can be written 𝒯𝑢 = 0. 
Solution: This is trivial. 
(b) Show 𝒯 is a linear operator. 
Solution: Linearity means that for functions 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) and constants 𝑐1 and 𝑐2 we 
have 𝒯(𝑐1𝑢 + 𝑐2𝑣) = 𝑐1𝒯𝑢 + 𝑐2𝒯𝑣. This is easy to verify: 

𝒯(𝑐1𝑢 + 𝑐2𝑣) = 𝑐1𝑢𝑡 + 𝑐2𝑣𝑡 − 𝑐1𝑐𝑢𝑥𝑥 − 𝑐2𝑐𝑣𝑥𝑥 = 𝑐1(𝑢𝑡 − 𝑐𝑢𝑥𝑥) + 𝑐2(𝑣𝑡 − 𝑐𝑣𝑥𝑥) = 𝑐1𝒯𝑢 + 𝑐2𝒯𝑣. 
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(c) Use Part (b) to show that if 𝑢1 and 𝑢2 are solutions to (H) then so is 𝑢1 + 𝑢2. 
Solution: By (b) 𝒯(𝑢1 + 𝑢2) = 𝒯(𝑢1) + 𝒯(𝑢2) = 0 + 0. QED 

(d) Show that two solutions to the homogeneous boundary conditions (HBC) can be super-
positioned to give another solution to (HBC). 
Solution: If 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) both satisfy (HBC) it is clear that so does 𝑢 + 𝑣. 

Problem 4 (Topic 25) (30 + 5EC: 5,10,10,5,5EC) 
The Heat Equation and Solar Energy Storage 

The example we have in mind is a solar pond, which can store heat to be used to generate 
electricity. Without salt, the hot water rises and the cold water sinks (called convection), 
causing much of the heat to be lost through the top of the pond. Adding salt gives the water 
a salinity gradient which damps down the convection because the hotter bottom water is also 
heavier, so it doesn’t tend to rise. In this case, the movement of heat is mostly by conduction 
and results in much less heat loss. 
Let 𝑢(𝑥, 𝑡) be the temperature of the pond at depth 𝑥 at time 𝑡. If no heat is being added to 
the pond, the temperature is modeled by the PDE (H) in Problem 3. 
If the sun is heating the pond, then we need to add input to the model. We’ll assume that it 
adds heat to the water linearly with respect to depth. This is modeled by the inhomogeneous, 
PDE (I), with inhomogeneous boundary conditions (IBC): 

𝑢𝑡 = 𝑐𝑢𝑥𝑥 + 𝑎(𝐿 − 𝑥) (I) 

𝑢(0, 𝑡) = 𝑇0 and 𝑢𝑥(𝐿, 𝑡) = 0. (IBC) 

Here, 𝐿 is the depth of the pond, 𝑎 > 0 is a constant which determines the rate of heating 
and 𝑇0 is the temperature of the air. 
Physically the first boundary condition says the temperature of the water surface is the same 
as that of the air and the second one says the earth acts as an insulator, so no heat is 
transfered from the bottom of the pond into the earth. 
(a) (Superposition principles.) (i) Suppose 𝑢ℎ(𝑥, 𝑡) is a solution to (H) and 𝑢𝑝(𝑥, 𝑡) is a 
solution to (I). Show 𝑢 = 𝑢𝑝 + 𝑢ℎ is also a solution to (I). 
(ii) Show that if 𝑢ℎ(𝑥, 𝑡) satisfies (HBC) and 𝑢𝑝(𝑥, 𝑡) satisfies (IBC) then 𝑢 = 𝑢𝑝 + 𝑢ℎ also 
satisfies (IBC). 
Here (H) and (HBC) refer to the equations in Problem 3. 
Solution: (i) This is just the linearity of 𝒯. 

𝒯(𝑢𝑝 + 𝑢ℎ) = 𝒯(𝑢𝑝) + 𝒯(𝑢ℎ) = 𝑎(𝐿 − 𝑥) + 0. 𝑄𝐸𝐷 

(ii) We have to show the boundary conditions can be superpositioned. This is easy, 𝑢𝑝(0, 𝑡) = 
𝑇0 and 𝑢ℎ(0, 𝑡) = 0 ⇒ 𝑢(0, 𝑡) = 𝑢𝑝(0, 𝑡) + 𝑢ℎ(0, 𝑡) = 𝑇0. 
Likewise 𝑢𝑥(𝜋, 𝑡) = (𝑢𝑝)𝑥(𝜋, 𝑡) + (𝑢ℎ)𝑥(𝜋, 𝑡) = 0. QED 

For Parts b-e let 𝑐 = 1, 𝑎 = 1 and 𝐿 = 𝜋. 
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(b) Find the steady-state solution of the PDE (I), which satisfies (IBC). This will be the 
temperature profile of the pond after a sufficiently long time has elapsed. Hint: At the 
steady state, the solution does not depend on time. 
Also, show that at this steady state, the water in the pond is hottest at the bottom. 
Solution: The steady state solution does not depend on time, so we can write 𝑢(𝑥, 𝑡) = 
𝑋(𝑥). Thus, the PDE (I) becomes 

0 = 𝑋″(𝑥) + (𝜋 − 𝑥). 

(𝑥 − 𝜋)3 

This is an 18.01 problem: 𝑋(𝑥) = + 𝑐1𝑥 + 𝑐2.6 
The boundary conditions (IBC) are 𝑋(0) = 𝑇0, 𝑋′(𝜋) = 0. So, 

𝑋(0) = −𝜋
6
3

+ 𝑐2 = 𝑇0 ⇒ 𝑐2 = 𝑇0 + 𝜋3 

6 
𝑋′(𝜋) = 𝑐1 = 0 

So the steady state solution is 

(𝑥 − 𝜋)3
𝑢𝑝(𝑥, 𝑡) = 𝑋(𝑥) = 6 

+ 𝑇0 + 𝜋3 

6 . 

The hottest pond temperature is the maximum of 𝑋(𝑥) on [0, 𝜋]. It’s easy to see that 𝑋(𝑥) 
is maximized on [0, 𝜋] at 𝑥 = 𝜋. That is, the maximum temperature is at the bottom of the 
pond. 
(c) Find the general solution 𝑢(𝑥, 𝑡) to (𝐻) + (𝐻𝐵𝐶) by using the Fourier separation-of-
variables method. 
Solution: We are solving: 

𝑢𝑡(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡) 

𝑢(0, 𝑡) = 0, 𝑢𝑥(𝜋, 𝑡) = 0. 
(H) 

(HBC) 

Step 1. Find separated solutions to Equation (H) 

Try 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 

Plug this into (H) to get: 𝑋𝑇 ′ = 𝑋″𝑇 ⇒ 
𝑋″

= 𝑇 ′
= constant = −𝜆.𝑋 𝑇 

(As always, if a function of 𝑥 = function of 𝑡 then they both must be constant functions. 
We call the constant −𝜆.) So, we have two ODEs: 

𝑋″ + 𝜆𝑋 = 0, 𝑇 ′ + 𝜆𝑇 = 0. 

Break into cases. 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆 𝑥) + 𝑏 sin(

√
𝜆 𝑥), 𝑇 (𝑡) = 𝑐𝑒−𝜆𝑡. 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐. 
Case (iii) 𝜆 < 0: Can skip this case, it never produces nontrivial modal solutions. 

Step 2. Find modal solutions (separated solutions, which also satisfy (HBC)). 
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For separated solutions, the homogeneous boundary conditions (HBC) are 𝑋(0) = 0,
𝑋′(𝜋) = 0. Again, we examine the cases. 
Case (i): 𝑋(0) = 𝑎 = 0, 𝑋′(𝜋) = −𝑎

√
𝜆 sin(

√
𝜆 𝜋) + 𝑏

√
𝜆 cos(

√
𝜆𝜋) = 0. 

Since 𝑎 = 0, the second condition becomes 𝑏
√

𝜆 cos(
√

𝜆𝜋) = 0. 
If 𝑏 = 0, then 𝑋(𝑥) = 0 and we have the trivial solution. 
If cos(

√
𝜆 𝜋) = 0, then 

√
𝜆 = 𝑛/2, with 𝑛 an odd integer. 

Thus we have modal solutions to (𝐻) + (𝐻𝐵𝐶) 

4 𝑡 sin (𝑛𝑥 𝑢𝑛(𝑥, 𝑡) = 𝑏𝑛𝑒− 𝑛
2 

2 
) , where 𝑛 is odd. 

Case (ii): 𝑋(0) = 𝑎 = 0, 𝑋′(𝜋) = 𝑏 = 0. 
So, this case provides no nontrivial modal solutions. 
Case (iii): Ignored –no nontrivial solutions. 

Step 3. Write down the general homogeneous solution. 
Using superposition, we combine all the modal solutions to get the general solution to (H), 
which also satisfies (HBC): 

𝑏𝑛 sin (𝑛𝑥 𝑢ℎ(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = ∑ 2 
) ⋅ 𝑒− 𝑛4

2 𝑡 . 
𝑛 𝑜𝑑𝑑 𝑛 𝑜𝑑𝑑 

(d) What is the general solution to the inhomogeneous system (𝐼) + (𝐼𝐵𝐶)? 

Hint: The steady-state solution is a particular solution of the original PDE. 
Solution: By the superposition principle in Part (a), the general inhomogeneous solution 
is 

(𝑥 − 𝜋)3 

𝑏𝑛 sin (𝑛𝑥 𝑒− 𝑛4
2 𝑡.𝑢(𝑥, 𝑡) = 𝑢𝑝(𝑥, 𝑡) + 𝑢ℎ(𝑥, 𝑡) = + 𝑇0 + 

𝜋
6
3 

+ ∑ 2 
) ⋅6 𝑛 𝑜𝑑𝑑 

(e) (Extra credit (Hard!)) Your answer in Part (c) should involve a sine series of the form 
∑ 𝑏𝑛 sin(𝑛𝑥/2). An initial condition 𝑣(𝑥, 0) = 𝑓(𝑥) could be used to find the coefficients. 

𝑛 odd 
This is not, in general, the Fourier series of the odd period 2𝜋 extension of 𝑓(𝑥), but rather 
the Fourier series of a different extension of 𝑓(𝑥). Describe that extension. 
Solution: The base period of the series ∑ 𝑏𝑛 sin(𝑛𝑥/2) is 4𝜋. This motivates the following 

𝑛 odd 
extension: First extend 𝑓(𝑥) from the interval [0, 𝜋] to [0, 2𝜋] by mirroring the graph of 𝑓(𝑥) 
over [0, 𝜋] onto [𝜋, 2𝜋] (see figure), call it 𝑓2(𝑥): 

𝑓2(𝑥) = {𝑓(𝑥) for 0 < 𝑥 < 𝜋 

𝑓(𝑥 − 𝜋) for 𝜋 < 𝑥 < 2𝜋 

The coefficients 𝑏𝑛 are the Fourier sine coefficients of 𝑓2, i.e., the Fourier coefficients of the 
odd period 4𝜋 extension of 𝑓2 –call this 𝑓2,̃ o. 
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x

y

π
3π 4π−π−2π

𝑓(𝑥) on [0, 𝜋], 𝑓2(𝑥) on [0, 2𝜋], 𝑓2,̃ o full graph 
∞ 

Since 𝑓2,̃ o(𝑥) is odd, its Fourier series is of the form ∑ 𝑏𝑛 sin(𝑛𝑥/2). The coefficients are 
𝑛=1 

𝑏𝑛 = 
2𝜋 

𝑓2(𝑥) sin(𝑛𝑥/2) 𝑑𝑥. 2𝜋
2 ∫ 

0 

The symmetry in the figures below, illustrate why 𝑏𝑛 = 0 when 𝑛 is even. 

x

y

π

𝑏1 = 1
𝜋 ∫

2𝜋 

0 
𝑓2(𝑥) sin(𝑥/2) 𝑑𝑥 ≠ 0. 

x

y

π

𝑏2 = 1
𝜋 ∫

2𝜋 

0 
𝑓2(𝑥) sin(𝑥) 𝑑𝑥 = 0. 

x

y

π

𝑏4 = 1
𝜋 ∫

2𝜋 

0 
𝑓2(𝑥) sin(𝑥/2) 𝑑𝑥 = 0. 

Note also that, by symmetry, 𝑏1 = 
𝜋 

𝑓(𝑥) sin(𝑥) 𝑑𝑥. Likewise, for the other odd coeffi-𝜋
2 ∫ 

0
cients. 

Problem 5 (Topic 25) (15: 10,5) 
Realistically strings don’t vibrate forever. To model this we can add a damping term to 
the wave equation. If we clamp the ends, we get boundary conditions. Finally, we can add 
initial conditions. Altogether we get the following PDE with boundary and initial conditions. 

𝑦𝑡𝑡 + 𝑏 𝑦𝑡 = 𝑎2 𝑦𝑥𝑥 for 0 ≤ 𝑥 ≤ 𝐿, 𝑡 > 0 (PDE) 

𝑦(0, 𝑡) = 𝑦(𝐿, 𝑡) = 0 (BC) 

𝑦(𝑥, 0) = 𝑓(𝑥), 𝑦𝑡(𝑥, 0) = 0. (IC) 

For this problem take 𝐿 = 1, 𝑎 = 2, 𝑏 = 7 and leave 𝑓(𝑥) arbitrary. 
(a) Use separation of variables to solve the PDE with boundary and initial conditions. (You 
will need to leave the Fourier sine or cosine series of 𝑓 in terms of arbitrary coefficients. 
Also, be careful when finding the function 𝑇 (𝑡) for small values of 𝑛.) 

Solution: Step 1. Try separated solutions to the PDE: 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 
Substitute this into the PDE: 𝑋(𝑇 ″ + 7𝑇 ′) = 4𝑋″𝑇 . 

𝑋″ 𝑇 ″ + 7𝑇 ′ 

Separating the variables gives = = −𝜆.𝑋 4𝑇 
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(As always, if a function of 𝑥 = function of 𝑡 then they both must be constant functions. 
We call the constant −𝜆.) So, we have two ODEs: 

𝑋″ + 𝜆𝑋 = 0, 𝑇 ″ + 7𝑇 ′ + 4𝜆𝑇 = 0. 

Break into cases. 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥). 𝑇 (𝑡) will be found later. 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥. 
Case (iii) 𝜆 < 0: Can skip this case, it never produces nontrivial modal solutions. 

Step 2. Find modal solutions (separated solutions, which also satisfy the BC). 
For separated solutions, the boundary conditions are 𝑋(0) = 0, 𝑋(1) = 0. 
Case (i) 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 cos(

√
𝜆) + 𝑏 sin(

√
𝜆). 

Since 𝑎 = 0, the second condition becomes 𝑏 sin(
√

𝜆) = 0. 
If 𝑏 = 0, then 𝑋(𝑥) = 0 and we have the trivial solution. 
If sin(

√
𝜆) = 0, then 

√
𝜆 = 𝑛𝜋 for some integer 𝑛. 

Conclusion: 𝜆 = 𝑛2𝜋2, 𝑛 = 1, 2, 3, …, Thus, for each 𝑛 we have a modal solution:
𝑦𝑛 = 𝑏𝑛 sin(𝑛𝜋𝑥) 𝑇𝑛(𝑡). 
Next we solve for 𝑇𝑛(𝑡): In this case 𝜆 = (𝑛𝜋)2 

Characteristic equation: 𝑟2 + 7𝑟 + 4𝜆 = 0. So the roots are 

𝑟 = −3.5 ± √(3.5)2 − 4𝑛2𝜋2. 

It’s important to check if the expression under the square root is positive or negative. In 
this case, because the damping constant is small, it is negative for all 𝑛 ≥ 1. We write the 
roots as 

𝑟 = −3.5 ± 𝛽𝑛 𝑖, where 𝛽𝑛 = √|3.52 − 4𝑛2𝜋2| . 

This gives: 𝑇𝑛(𝑡) = 𝑒−3.5𝑡(𝑐𝑛 cos(𝛽𝑛𝑡) + 𝑑𝑛 sin(𝛽𝑛𝑡)) and we have the modal solutions 

𝑦𝑛(𝑥, 𝑡) = sin(𝑛𝜋𝑥)𝑒−3.5𝑡(𝑐𝑛 cos(𝛽𝑛𝑡) + 𝑑𝑛 sin(𝛽𝑛𝑡)). 

Case (ii) 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 + 𝑏 = 0. 
This implies 𝑎 = 0, 𝑏 = 0, i.e., this case only produces the trivial solution. 
Case (iii) Can ignore. 

Step 3. Use superposition to give the general solution to the PDE and BC. 

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝜋𝑥)𝑒−3.5𝑡(𝑐𝑛 cos(𝛽𝑛𝑡) + 𝑑𝑛 sin(𝛽𝑛𝑡)) . 

Step 4. Use the initial conditions to find values for the coefficients. 

𝑦(𝑥, 0) = ∑ sin(𝑛𝜋𝑥)𝑐𝑛 = 𝑓(𝑥). 
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So the coefficients 𝑐𝑛 are the Fourier sine coefficients of 𝑓(𝑥): 

𝑐𝑛 = 2 ∫
1 

sin(𝑛𝜋𝑥)𝑓(𝑥) 𝑑𝑥 . 
0 

Next consider the IC: 𝑦𝑡(𝑥, 0) = 0: 

𝑦𝑡(𝑥, 0) = ∑ sin(𝑛𝜋𝑥)(−3.5𝑐𝑛 + 𝛽𝑛𝑑𝑛) = 0. 

So, (−3.5𝑐𝑛 + 𝛽𝑛𝑑𝑛) = 0, which implies 𝑑𝑛 = 3.5𝑐𝑛/𝛽𝑛 . 
Combining the formulas for 𝑦(𝑥, 𝑡), 𝑐𝑛, 𝑑𝑛 we have the solution to the problem. 
(b) What is the physical effect of the damping term? How is this seen in your solution? 

Solution: The physical effect of the damping term is to dissipate energy, causing the 
vibrations to die out. This is seen in the 𝑒−3.5𝑡 term in the solution. 

End of problem set 8 solutions. 
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