
ES.1803 Problem Section Problems for Quiz 2, Spring 2024 
Solutions 

Topic 4: Complex numbers and exponentials 

Problem 4.1. Make up and solve some simple algebra problems involving addition, 
subtraction, division, magnitude, complex conjugation. 
Solution: Provided by you! 

Problem 4.2. (Polar coordinates) 
Write 𝑧 = −1 + 

√
3𝑖 in polar form. 

Solution: Easily: 

|𝑧| = 2, and Arg(𝑧) = 𝜙 = tan−1(−
√

3/1) = 2𝜋/3 . 

𝑧 = 2𝑒𝑖𝜙 = 2𝑒𝑖2𝜋/3.(We know 𝜙 is in the 2nd quadrant.) So, 

Problem 4.3. (Polar coordinates) 
We know −1 + 

√
3 𝑖 = 2𝑒𝑖2𝜋/3. Use this to answer the following questions. 

(a) Compute the product (−1 + 
√

3𝑖)(𝑎 + 𝑏𝑖) (where 𝑎, 𝑏 are real). 
Describe geometrically what multiplying by −1 + 

√
3𝑖 does. 

Solution: (−1 + 
√

3𝑖)(𝑎 + 𝑏𝑖) = (−𝑎 − 
√

3𝑏) + (−𝑏 + 
√

3𝑎)𝑖. 
In polar coordinates 

(−1 + 
√

3𝑖)𝑟𝑒𝑖𝜃 = 2𝑒2𝜋/3𝑟𝑒𝑖𝜃 = 2𝑟𝑒𝑖(𝜃+2𝜋/3). 

Multiplying 𝑧 = 𝑎 + 𝑏𝑖 by this number multiplies the magnitude of 𝑧 by 2, and increases 
the argument by 2𝜋/3, i.e., it expands by a factor of 2 and rotates by 120∘. 
(b) What are the polar coordinates of (−1 + 

√
3𝑖)(𝑎 + 𝑏𝑖) in terms of the polar coordinates 

of 𝑎 + 𝑏𝑖 = 𝑟𝑒𝑖𝜃? 

Solution: See answer to Part (a): The magnitude is 2𝑟 and the argument is 𝜃 + 2𝜋/3. 
(c) Describe the sequence of powers of −1 + 

√
3𝑖, positive and negative. 

Solution: The powers of −1 + 
√

3𝑖 spiral out, rotating counterclockwise by 120∘ each time 
and growing by a factor of 2. Successive negative powers rotate clockwise by 120∘ and shrink 
by a factor of 1/2. 

Problem 4.4. Write 3𝑒𝑖𝜋/6 in rectangular coordinates. 

Solution: By Euler’s formula: 3𝑒𝑖𝜋/6 = 3 cos(𝜋/6) + 3𝑖 sin(𝜋/6) = 3
√

3/2 + 𝑖3/2. 

Problem 4.5. (Trig triangle) 
Draw and label the triangle relating rectangular with polar coordinates. 
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Solution: 

x (real axis)

y (imaginary axis)

r

x

y

θ

z = x+ yi = reiθ

1Problem 4.6. Compute −2 + 3𝑖 in polar form. Convert the denominator to polar form 

first. Be sure to describe the polar angle precisely. 
Solution: In polar form −2 + 3𝑖 = 

√
13𝑒𝑖𝜃, where 𝜃 = arg(−2 + 3𝑖) = tan−1(−3/2) in the 

second quadrant.
1 √1

13𝑒−𝑖𝜃 Therefore, = = .−2 + 3𝑖 √
13𝑒
1 

𝑖𝜃 

Problem 4.7. Find a formula for cos(3𝜃) in terms of cos(𝜃) and sin(𝜃). 
Solution: First note, cos(3𝜃) = Re(𝑒3𝑖𝜃). We know, 

𝑒3𝑖𝜃 = (cos(𝜃) + 𝑖 sin(𝜃))3 = cos3(𝜃) + 3𝑖 cos2(𝜃) sin(𝜃) − 3 cos(𝜃) sin2(𝜃) − 𝑖 sin3(𝜃) 

Taking the real part, we have cos(3𝜃) = cos3(𝜃) − 3 cos(𝜃) sin2(𝜃). 

Problem 4.8. (Roots) 
Find all fifth roots of -2. Give them in polar form. Draw a figure showing the roots in the 
complex plane. 
Solution: We start by writing −2 in polar form, being sure to include all values of the 
argument: 

−2 = 2𝑒𝑖𝜋+𝑖2𝑛𝜋. 
Raising this to the power 1/5 gives 

= 21/5𝑒𝑖𝜋/5+𝑖2𝑛𝜋/5.(−2)1/5 

Thus the 5 unique roots are: 

𝑧1 = 21/5𝑒𝑖𝜋/5, 𝑧2 = 21/5𝑒𝑖3𝜋/5, 𝑧3 = 21/5𝑒𝑖5𝜋/5, 𝑧4 = 21/5𝑒𝑖7𝜋/5, 𝑧5 = 21/5𝑒𝑖9𝜋/5. 

= −21/5The only one of these that simplifies is 𝑧3 = 21/5𝑒𝑖5𝜋/5 . 
The figure below shows −2 and its fifth roots. Notice they are equally spaced around a 
circle of radius 21/5. 
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Fifth roots of −2 

Problem 4.9. (Complex replacement or complexification) 

Compute 𝐼 = ∫ 𝑒4𝑥 cos(3𝑥) 𝑑𝑥 using complex techniques. 

Solution: Replacing cos(3𝑥) by 𝑒𝑖3𝑥 we have: 𝐼𝑐 = ∫ 𝑒(4+3𝑖)𝑥, 𝐼 = Re(𝐼𝑐). 

𝑒(4+3𝑖)𝑥 

Integrating: 𝐼𝑐 = 4 + 3𝑖 . 

Polar form: 4 + 3𝑖 = 5𝑒𝑖𝜙, where 𝜙 = Arg(4 + 3𝑖) = tan−1(3/4) in Q1. 
𝑒4𝑥 

Thus, 𝐼𝑐 = 5 
𝑒𝑖(4𝑥−𝜙). This implies 

𝑒4𝑥 

𝐼 = Re(𝐼𝑐) = cos(3𝑥 − 𝜙). 5 

Problem 4.10. The point of this problem is to help you distinguish between taking the 
real part of a function and finding which members of a family of functions are real-valued. 
(a) Show the inverse Euler formulas are true: 

cos(𝑡) = (𝑒𝑖𝑡 + 𝑒−𝑖𝑡)/2, sin(𝑡) = (𝑒𝑖𝑡 − 𝑒−𝑖𝑡)/2𝑖. 

Solution: Use Euler’s formula: 

𝑒𝑖𝑡 = cos(𝑡) + 𝑖 sin(𝑡)
𝑒−𝑖𝑡 = cos(𝑡) − 𝑖 sin(𝑡) 

Adding these two formulas gives 𝑒𝑖𝑡 + 𝑒−𝑖𝑡 = 2 cos(𝑡). Dividing by 2 then gives the inverse 
Euler formula for cos(𝑡). 
Likewise, subtracting the two formulas gives 𝑒𝑖𝑡 − 𝑒−𝑖𝑡 = 2𝑖 sin(𝑡). Now, dividing by 2𝑖 gives 
the formula for sin(𝑡). 
(b) Find all the real-valued functions of the form 𝑐1̃ 𝑒𝑖𝑡 +𝑐2̃ 𝑒−𝑖𝑡, where 𝑐1̃ and 𝑐2̃ are complex 
constants. 
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(ii) Using Euler’s formula we know that 

𝑐1̃ 𝑒𝑖𝑡 + 𝑐2̃ 𝑒−𝑖𝑡 = (𝑐1̃ + 𝑐2̃ ) cos(𝑡) + 𝑖(𝑐1̃ − 𝑐2̃ ) sin(𝑡) 

If this is real-valued then the coefficients of cos(𝑡) and sin(𝑡) must be real: 
𝑐1̃ + 𝑐2̃ real implies Im(𝑐2̃ ) = − Im(𝑐2̃ ). 
𝑖(𝑐1̃ − 𝑐2̃ ) real implies Re(𝑐2̃ ) = Re(𝑐2̃ ). 
Thus 𝑐1̃ and 𝑐2̃ are complex conjugates, say 𝑐1̃ = 𝑎 − 𝑖𝑏 and 𝑐2̃ = 𝑎 + 𝑖𝑏. Then 

𝑐1̃ 𝑒𝑖𝑡 + 𝑐2̃ 𝑒−𝑖𝑡 = 2𝑎 cos(𝑡) + 2𝑏 sin(𝑡) 

Changing notation slightly, the answer is 𝑥(𝑡) = 𝑎 cos(𝑡) + 𝑏 sin(𝑡). 

𝑐𝑒(2+3𝑖)𝑡 Problem 4.11. Find all the real-valued functions of the form 𝑥 = ̃ . 
Solution: Let 𝑐 ̃ = 𝑎 + 𝑖𝑏. Expanding 𝑥 we get 

𝑥(𝑡) = 𝑒2𝑡(𝑎 + 𝑖𝑏)(cos(3𝑡) + 𝑖 sin(3𝑡)) = 𝑒2𝑡(𝑎 cos(3𝑡) − 𝑏 sin(3𝑡) + 𝑖(𝑎 sin(3𝑡) + 𝑏 cos(3𝑡))) 

It’s clear that the imaginary part can only be 0 if 𝑎 = 𝑏 = 0. So the only such real-valued 
function is 𝑥(𝑡) = 0. 

Problem 4.12. Find the 3 cube roots of 1 by locating them on the unit circle and using 
basic trigonometry. 
Solution: We know one cube root is 1. This is on the unit circle and the three roots are 
evenly spaced around the circle. So the other two are at 𝑒2𝜋𝑖/3 and 𝑒4𝜋𝑖/3. Since 2𝜋/3 = 120∘ 

and 4𝜋/3 = 240∘, we can use our knowledge of 30, 60, 90 triangles to write the roots as 

1, 𝑒2𝜋𝑖/3 = 
−1 + 

√
3𝑖, 𝑒4𝜋𝑖/3 = 

−1 − 
√

3𝑖 
2 2 

The figure below shows the three cube roots of 1. 

x

y

1

(−1 +
√
3i)/2

(−1−
√
3i)/2

Cube roots of 1 

Problem 4.13. Express in the form 𝑎 + 𝑏𝑖 the 6 sixth roots of 1. 
Solution: In polar form 1 = 𝑒𝑖2𝜋𝑘, so 

11/6 = 𝑒𝑖2𝜋𝑘/6 = 𝑒𝑖⋅0, 𝑒𝑖𝜋/3, 𝑒𝑖2𝜋/3, 𝑒𝑖3𝜋/3, 𝑒𝑖5𝜋/3, 𝑒𝑖5𝜋/3 

√
3 

√
3 

√
3 1

√
3= 1, 1

2 + 𝑖 2 
, −1

2 + 𝑖 2 
, −1, −1

2 − 𝑖 2 − 𝑖 2 , 2 
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Problem 4.14. Use Euler’s formula to derive the trig addition formulas for sin and cos. 
= 𝑒𝑖(𝛼+𝛽) Solution: Use 𝑒𝑖𝛼𝑒𝑖𝛽 . 

𝑒𝑖𝛼𝑒𝑖𝛽 = (cos(𝛼) + 𝑖 sin(𝛼))(cos(𝛽) + 𝑖 sin(𝛽)) 

= (cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽)) + 𝑖(sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽)) 

𝑒𝑖(𝛼+𝛽) = cos(𝛼 + 𝛽) + 𝑖 sin(𝛼 + 𝛽) 

Equating the two expressions above, we have: 

(cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽)) + 𝑖(sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽)) = cos(𝛼 + 𝛽) + 𝑖 sin(𝛼 + 𝛽). 

Equating the real and imaginary parts, we get the trig addition formulas: 

cos(𝛼) cos(𝛽) − sin(𝛼) sin(𝛽) = cos(𝛼 + 𝛽) 

sin(𝛼) cos(𝛽) + cos(𝛼) sin(𝛽) = sin(𝛼 + 𝛽). 

Problem 4.15. Using the polar form, explain why |𝑧𝑛| = |𝑧|𝑛 and arg(𝑧𝑛) = 𝑛 arg(𝑧) for
𝑛 a positive integer. 
Solution: In polar coordinates we have 𝑧 = 𝑟𝑒𝑖𝜃. So, 𝑧𝑛 = 𝑟𝑛𝑒𝑖𝑛𝜃, i.e., |𝑧𝑛| = 𝑟𝑛 = |𝑧|𝑛 

and arg(𝑧𝑛) = 𝑛𝜃 = 𝑛 arg(𝑧). ■ 

Another way to say this is: 
Magnitudes multiply, so |𝑧𝑛| = |𝑧 ⋅ 𝑧 ⋯ 𝑧| = |𝑧| ⋅ |𝑧| ⋯ |𝑧| = |𝑧|𝑛. 
Arguments add, so arg(𝑧𝑛) = arg(𝑧 ⋅ 𝑧 ⋯ 𝑧) = arg(𝑧) + arg(𝑧) + ⋯ + arg(𝑧) = 𝑛 arg 𝑧. 

Problem 4.16. Suppose 𝑧𝑛 = 1. What must |𝑧| be? What are the possible values of 
arg(𝑧), if 𝑧𝑛 = 1? 

Solution: |𝑧|𝑛 = 1, and |𝑧| > 0, so |𝑧| must be 1. 
We must have 𝑛 arg(𝑧) is a multiple of 2𝜋. So, arg(𝑧) = 2𝑚𝜋/𝑛 for some integer 𝑛. 

Problem 4.17. Find the cube roots of 𝑖. 
Solution: We know that 𝑖 = 𝑒𝑖𝜋/2+2𝑚𝜋𝑖, so the third roots are of the form 𝑒𝑖𝜋/6+2𝑚𝜋𝑖/3. 
The three unique roots are 

𝑒𝑖9𝜋/6 𝑒𝑖𝜋/6 = (
√

3 + 𝑖)/2, 𝑒𝑖5𝜋/6 = (−
√

3 + 𝑖)/2, = −𝑖. 

The figure below shows the three cube roots of 𝑖. 
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x

y

i

(
√
3 + i)/2(−

√
3 + i)/2

−i

Cube roots of 𝑖 

Problem 4.18. By using (𝑒𝑖𝑡)4 = 𝑒4𝑖𝑡 and Euler’s formula, find an expression for sin(4𝑡)
in terms of powers of cos(𝑡) and sin(𝑡), 
Solution: Compute 

𝑒4𝑖𝑡 = (𝑒𝑖𝑡)4 

= (cos(𝑡) + 𝑖 sin(𝑡))4 

= cos4(𝑡) + 4𝑖 cos3(𝑡) sin(𝑡) − 6 cos2(𝑡) sin2(𝑡) − 4𝑖 cos(𝑡) sin3(𝑡) + sin4(𝑡) 

= (cos4(𝑡) − 6 cos2(𝑡) sin2(𝑡) + sin4(𝑡)) + 𝑖 (4 cos3(𝑡) sin(𝑡) − 4 cos(𝑡) sin3(𝑡)) 

So, sin(4𝑡) = Im(𝑒4𝑖𝑡) = 4 cos3(𝑡) sin(𝑡) − 4 cos(𝑡) sin3(𝑡). 

Problem 4.19. Trajectories of 𝑒(𝑎+𝑏𝑖)𝑡 can vary a lot, depending upon the value of the 
complex number 𝑎 + 𝑏𝑖. The “Complex Exponential” Mathlet shows this clearly. Invoke this 
applet if you can: https://mathlets.org/mathlets/complex-exponential/. You can 
use it to gain insight into the following questions. 
(a) Sketch the trajectory of the complex-valued function 𝑒(−1+2𝜋𝑖)𝑡, and the graphs of its real 
and imaginary parts. 
Solution: This is a spiral moving towards the origin and turning counterclockwise. The 
real part is 𝑒−𝑡 cos(2𝜋𝑡): a “damped sinusoid” with value 1 at 𝑡 = 0. The imaginary part is 
𝑒−𝑡 sin(2𝜋𝑡): a damped sinusoid with value 0 at 𝑡 = 0 and positive derivative there. 

x

y

1
t

x, y

1

1 2

x(t)

y(t)

Left: Spiral in to origin. Right: Graphs of 𝑥(𝑡), 𝑦(𝑡). 

https://mathlets.org/mathlets/complex-exponential/
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(b) For each of the following shapes, decide on all the values of 𝑎+𝑏𝑖 for which the trajectory 
of 𝑒(𝑎+𝑏𝑖)𝑡 has this shape. 
(i) A circle centered at 0, traversed counterclockwise. What circles are possible? 

(ii) A circle centered at 0, traversed clockwise. 
(iii) A ray (straight half line) heading away from the origin. 
(iv) A curve heading to zero as 𝑡 → ∞. 
Solution: This will all depend upon Euler’s formula 

𝑒(𝑎+𝑏𝑖)𝑡 = 𝑒𝑎𝑡(cos(𝑏𝑡) + 𝑖 sin(𝑏𝑡)) 

Notice that |𝑒(𝑎+𝑏𝑖)𝑡| = 𝑒𝑎𝑡 and Arg(𝑒(𝑎+𝑏𝑖)𝑡) = 𝑏𝑡. 
(i) This can only happen if the magnitude is constant: so 𝑎 = 0. To go counterclockwise, 
we must have 𝑏 > 0. Ans: 𝑏𝑖, 𝑏 > 0: the “positive imaginary axis.” The circle must be the 
unit circle. 
(ii) Again 𝑎 = 0, but now 𝑏 < 0: the “negative imaginary axis.” 

(iii) Now 𝑏 must be zero. For the magnitude to be increasing, we must have 𝑎 > 0. Answer: 
real 𝑎, 𝑎 > 0: the postive real axis. 
(iv) For this we must have 𝑎 < 0. 𝑏 can be anything. So: 𝑎 + 𝑏𝑖 with 𝑎 < 0: the left half 
plane. 

Problem 4.20. (a) Write cos(𝜋𝑡) − 
√

3 sin(𝜋𝑡) in the form 𝐴 cos(𝜔𝑡 − 𝜙). 
(b) Write 5 cos (3𝑡 + 3𝜋

4 ) in the form 𝑎 cos(𝜔𝑡) + 𝑏 sin(𝜔𝑡). 
(In each case, begin by drawing a right triangle with sides 𝑎 and 𝑏, angle 𝜙, hypotenuse 𝐴.) 

Solution: This problem uses the identity 

𝑎 cos(𝜔𝑡) + 𝑏 sin(𝜔𝑡) = 𝐴 cos(𝜔𝑡 − 𝜙) 

in which (𝐴, 𝜙) are the polar coordinates of the coefficients (𝑎, 𝑏). 

(a) We have the point (𝑎, 𝑏) = (1, −
√

3) (in the 4th quadrant). So, 𝐴 = 
√1 + 3 = 2 and

𝜙 = tan−1(−
√

3) = −𝜋/3. Thus, 

cos(𝜋𝑡) − 
√

3 sin(𝜋𝑡) = 2 cos (𝜋𝑡 + 
𝜋
3 ) . 
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(b) We have 𝐴 = 5 and 𝜙 = 3𝜋/4. So, 

𝑎 = 5 cos (−3𝜋
4 

) = −√5
2

, 𝑏 = 5 sin (−3𝜋
4 

) = −√5
2

. 

Thus, 5 cos (3𝑡 + 
3𝜋
4 

) = −√5
2 

cos(3𝑡) − √5
2 

sin(3𝑡). 

Problem 4.21. Write cos(2𝑡) + sin(2𝑡) in the form 𝐴 cos(𝜔𝑡 − 𝜙). 
Solution: The coefficients are (𝑎, 𝑏) = (1, 1), which have polar coordinates 𝐴 = 

√
2,

𝜋 𝜙 = 4 
. So, cos(2𝑡) + sin(2𝑡) = 

√
2 cos (2𝑡 − 

𝜋
4 ). 

Topic 5: Linear, constant coefficient, homogeneous DEs 

Problem 5.22. (a) Solve 𝑥″ − 8𝑥′ + 7𝑥 = 0 using the characteristic equation method. 
Solution: (Model solution) Characteristic equation: 𝑟2 − 8𝑟 + 7 = 0. 
Roots: 𝑟 = 7, 1. 
General real-valued solution: 𝑥(𝑡) = 𝑐1𝑒7𝑡 + 𝑐2𝑒𝑡. 
(b) Solve 𝑥″ + 2𝑥′ + 5𝑥 = 0 using the characteristic equation method. 
Solution: Characteristic equation: 𝑟2 + 2𝑟 + 5 = 0. 
Roots: 𝑟 = (−2 ± 

√
4 − 20)/2 = −1 ± 2𝑖. 

General real-valued solution: 𝑥(𝑡) = 𝑐1𝑒−𝑡 cos(2𝑡) + 𝑐2𝑒−𝑡 sin(2𝑡). 
(c) Assume the polynomial 𝑟5 + 𝑎4𝑟4 + 𝑎3𝑟3 + 𝑎2𝑟2 + 𝑎1𝑟 + 𝑎0 = 0 has roots 

0.5, 1, 1, 2 ± 3𝑖. 

Give the general real-valued solution to the homogeneous constant coefficient DE 

𝑥(5) + 𝑎4𝑥(4) + 𝑎3𝑥(3) + 𝑎2𝑥″ + 𝑎1𝑥′ + 𝑎0𝑥 = 0. 

Solution: Since we are given the roots, we can write the general solution directly: 

𝑥(𝑡) = 𝑐1𝑒0.5𝑡 + 𝑐2𝑒𝑡 + 𝑐3𝑡𝑒𝑡 + 𝑐4𝑒2𝑡 cos(3𝑡) + 𝑐5𝑒2𝑡 sin(3𝑡). 

Problem 5.23. (Unforced second-order physical systems) 
The DE 𝑥″ + 𝑏𝑥′ + 4𝑥 = 0 models a damped harmonic oscillator. For each of the val-
ues 𝑏 = 0, 1, 4, 5 say whether the system is undamped, underdamped, critically damped or 
overdamped. 
Sketch a graph of the response of each system with initial condition 𝑥(0) = 1 and 𝑥′(0) = 0. 
(It is not necessary to find exact solutions to do the sketch.) 
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Say whether each system is oscillatory or non-oscillatory. 
−𝑏 ± 

√
𝑏2 − 16 Solution: The characteristic roots are . We call the term under the square 2

root the discriminant. 
𝑏 = 0: The system is undamped and oscillatory (in fact sinusoidal). 
𝑏 = 1: The discriminant = 1 − 16 < 0, so the roots are complex, which implies the system 
is underdamped and oscillatory. 
𝑏 = 5: The discriminant is positive, so the roots are real, which implies system overdamped 
and non-oscillatory. 
𝑏 = 5: The discriminant is positive, so the roots are real, which implies system overdamped 
and non-oscillatory. 
𝑏 = 5: The discriminant is positive, so the roots are real, which implies system overdamped 
and non-oscillatory. 
Here are plots of each of these solutions starting from 𝑥(0) = 1, 𝑥′(0) = 0. 

t

x(t)

𝑏 = 0: undamped 

t

x(t)

𝑏 = 1: underdamped 

t

x(t)

𝑏 = 4: crit. damped 

t

x(t)

𝑏 = 5: overdamped 

The following figure is from the Topic 5 notes. It shows the different types of damping, 
though not necessarily using the coefficients in this problem. Note, that the initial conditions 
are all the same and, the initial velocity 𝑥′(0) = 0 causes all the graphs to have a horizontal 
tangent at 𝑡 = 0. 

t

x

overdamped

underdamped

critically damped

undamped

Problem 5.24. In the spring system below, both springs are unstretched when the position 
of the mass is 𝑥 = 0, which is exactly in the middle. Write down a DE modeling the position 
of the mass over time. 

m

k k

x(t)
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Solution: When the mass is at 𝑥 > 0 then the left spring is stretched by 𝑥 and the right 
spring is compressed by 𝑥, so the force on the mass is 𝑚𝑥̈ = −2𝑘𝑥 or 𝑚𝑥 + 2𝑘𝑥 = 0.̈ 

Problem 5.25. State and verify the superposition principle for 𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 0, (𝑚,
𝑏, 𝑘 constants). 
Solution: Superposition principle for linear, homogeneous DEs: 
If 𝑥1 and 𝑥2 are solutions to the DE then so are all linear combinations 𝑥 = 𝑐1𝑥1 + 𝑐2𝑥2. 

Proof. Plug 𝑥 into the DE and then chug through the algebra to show that 𝑥 is a solution. 

𝑚𝑥″ + 𝑏𝑥′ + 𝑘𝑥 = 𝑚(𝑐1𝑥1 + 𝑐2𝑥2)″ + 𝑏(𝑐1𝑥1 + 𝑐2𝑥2)′ + 𝑘(𝑐1𝑥1 + 𝑐2𝑥2) 

= 𝑐1𝑚𝑥″
1 + 𝑐2𝑚𝑥2

″ + 𝑐1𝑏𝑥′
1 + 𝑐2𝑏𝑥2

′ + 𝑐1𝑘𝑥1 + 𝑐2𝑘𝑥2 

= 𝑐1 𝑚𝑥″
1 + 𝑏𝑥1

′ + 𝑘𝑥1 +𝑐2 𝑚𝑥2
″ + 𝑏𝑥′

2 + 𝑘𝑥2⏟⏟⏟⏟⏟⏟⏟ ⏟⏟⏟⏟⏟⏟⏟ 
0 by assumption that 0 by assumption that 

𝑥1 is a solution 𝑥2 is a solution 

= 0 ■ 

Problem 5.26. A constant coefficient, linear, homogeneous DE has characteristic roots 

−1 ± 2𝑖, −2, −2, −3 ± 4𝑖. 

(a) What is the order of the DE? (Notice the ± in the list of roots.) 

Solution: 6 roots implies it is a 6th order DE. 
(b) What is the general, real-valued solution. 
Solution: The 6 roots give 6 basic solutions: 

𝑥1 = 𝑒−𝑡 cos(2𝑡) 𝑥2 = 𝑒−𝑡 sin(2𝑡)
𝑥3 = 𝑒−2𝑡 𝑥4 = 𝑡𝑒−2𝑡 

𝑥5 = 𝑒−3𝑡 cos(4𝑡) 𝑥6 = 𝑒−3𝑡 sin(4𝑡) 

The general solution is 

𝑥(𝑡) = 𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐4𝑥4 + 𝑐5𝑥5 + 𝑐6𝑥6. 

(c) Draw the pole diagram for this system. Explain why it shows that all solutions decay 
exponentially to 0. What is the exponential decay rate of the general solution? 

Solution: For the pole diagram, we put an x at each root. We indicate the double root by 
circling it and putting a small 2 as a superscript. 
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Re

Im

2

−1−2−3

i

−i

2i

−2i

3i

−3i

Since all the poles are in the left half plane, all the basic solutions have negative exponents, 
i.e., decay exponentially to 0. This implies that all solutions, which are linear combinations 
of the basic ones, decay exponentially. 
The decay rate is controlled by the right-most root. In this case, this has real part -1, so 
the general solution decays like 𝑒−𝑡. 

Topic 6: Operators, inhomogeneous DEs, ERF and SRF 

Problem 6.27. Let 𝑃(𝐷) = 𝐷2 + 6𝐷 + 5𝐼. Find the general real-valued solution to each 
of the following. 
(a) 𝑃 (𝐷)𝑥 = 𝑒−2𝑡. 
Solution: The characteristic polynomial is 𝑃(𝑟) = 𝑟2 + 6𝑟 + 5. Using the exponential 
response formula (ERF) to find a particular solution. 

𝑒−2𝑡 

𝑃(−2) = −3, so 𝑥𝑝(𝑡) = .𝑃 (2) 
= −𝑒−2𝑡 

3 

The characteristic roots are −1, −5, so the general homogeneous solution is 

𝑥ℎ(𝑡) = 𝑐1𝑒−𝑡 + 𝑐2𝑒−5𝑡 . 

By superposition, the general solution to the DE is 𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡) = −𝑒−2𝑡 

+ 𝑐1𝑒−𝑡 + 𝑐2𝑒−5𝑡.3 

(b) 𝑃 (𝐷)𝑥 = cos(3𝑡). 
Solution: We’ll use the sinusoidal response formula (SRF) to find a particular solution 
𝑥𝑝(𝑡). 

𝑃 (3𝑖) = −4 + 18𝑖. So, |𝑃 (3𝑖)| = 2
√

85 and 𝜙 = Arg(𝑃 (3𝑖)) = tan−1(−9/2) in Q2 . 

𝑥𝑝(𝑡) = 
cos(3𝑡 − 𝜙) = 

cos(3𝑡 − 𝜙) Thus the SRF gives .|𝑃 (3𝑖)| 2
√

85 

Using the homogeneous solution from Part (a), the general solution to the linear DE is 

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡). 
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Alternatively, we could have used complex replacement with the DE 𝑃 (𝐷)𝑧 = 𝑒3𝑖𝑡 –see the 
answer to Part (c) 

(c) 𝑃 (𝐷)𝑥 = 𝑒2𝑡 cos(3𝑡). 
Solution: We start by using complex replacement to get the equation: 

𝑃(𝐷)𝑧 = 𝑒(2+3𝑖)𝑡, with 𝑥 = Re(𝑧). 

𝑒(2+3𝑖)𝑡 

The ERF gives a particular solution 𝑧𝑝(𝑡) = 𝑃(2 + 3𝑖) . 

Computing: 𝑃 (2+3𝑖) = 12+30𝑖, so |𝑃 (2+3𝑖)| = 6
√

29 and 𝜙 = Arg(𝑃 (2 + 3𝑖)) = tan−1(5/2) in Q1. 
Therefore, 

𝑒2𝑡𝑒𝑖(3𝑡−𝜙) 𝑒2𝑡 

𝑧𝑝(𝑡) = , and 𝑥𝑝(𝑡) = Re(𝑧𝑝(𝑡)) = 6
√

29 
cos(3𝑡 − 𝜙). 6

√
29 

Again, using the homogeneous solution from Part (a), we have the general solution to the 

linear DE is 𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡). 

(d) 𝑃 (𝐷)𝑥 = 𝑒−𝑡. 

Solution: Since 𝑃(−1) = 0, we use the extended ERF: 𝑥𝑝(𝑡) = 𝑡𝑒−𝑡/𝑃 ′(−1) = 𝑡𝑒−𝑡/4. 
Again, using the homogeneous solution from Part (a), we have the general solution to the 

linear DE is 𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡). 

Problem 6.28. (Sinusoidal response formula (SRF)) 
Let 𝑃(𝐷) = 𝐷2 + 4𝐷 + 3. Find a solution to 𝑃 (𝐷)𝑥 = cos(2𝑡) 

Solution: The SRF says a particular solution is given by 

𝑥𝑝(𝑡) = 
cos(2𝑡 − 𝜙), where 𝜙 = Arg(𝑃 (2𝑖)). |𝑃 (2𝑖)| 

Computing: 𝑃(2𝑖) = −1 + 8𝑖, so |𝑃 (2𝑖)| = 
√

65 and 𝜙 = Arg(𝑃 (2𝑖)) = tan−1(−8) in Q2 . 

𝑥𝑝(𝑡) = 
cos(2𝑡 − 𝜙) Thus, .√

65 

Problem 6.29. Solve 𝑃 (𝐷)𝑥 = 𝑥″ + 4𝑥′ + 5𝑥 = 𝑒−𝑡 cos 2𝑡. 

Do this using complex replacement. Give the general solution. 
Solution: Particular solution: 
Complex replacement: 

𝑃 (𝐷)𝑧 = 𝑒−𝑡𝑒2𝑡𝑖 = 𝑒(−1+2𝑖)𝑡 (𝑥 = Re(𝑧)) 

𝑒(−1+2𝑖)𝑡 𝑒(−1+2𝑖)𝑡 

ERF: 𝑧𝑝(𝑡) = 𝑃(−1 + 2𝑖) 
= −2 + 4𝑖 . 
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Side work: −2 + 4𝑖 = 2
√

5𝑒𝑖𝜙, where tan 𝜙 = −2, 𝜙 in second quadrant. 
𝑒−𝑡 𝑒−𝑡 So, 𝑧𝑝(𝑡) = 2
√

5𝑒(2𝑡−𝜙)𝑖. Taking the real part, 𝑥𝑝(𝑡) = Re(𝑧𝑝) = 2
√

5 
cos(2𝑡 − 𝜙). 

Homogeneous solution: (𝑃 (𝐷)𝑥 = 0) 

Characteristic equation: 𝑟2 + 4𝑟 + 5 = 0 ⇒ 𝑟 = −2 ± 𝑖. 
So the general homogeneous solution is 𝑥ℎ(ℎ) = 𝑐1𝑒−2𝑡 cos 𝑡 + 𝑐2𝑒−2𝑡 sin 𝑡. 

𝑒−𝑡 

General solution to 𝑃 (𝐷)𝑥 = 𝑒−𝑡 cos 2𝑡: 𝑥(𝑡) = 𝑥𝑝 + 𝑥ℎ = 2
√

5 
cos(2𝑡 − 𝜙) + 𝑐1𝑒−2𝑡 cos 𝑡 + 𝑐2𝑒−2𝑡 sin 𝑡. 

Problem 6.30. Let 𝑃(𝐷) = 𝐷2 + 4𝐷 + 6𝐼. Solve 𝑃 (𝐷)𝑥 = cos(2𝑡). 
Solution: The SRF says a particular solution is given by 

𝑥𝑝(𝑡) = 
cos(2𝑡 − 𝜙), where 𝜙 = Arg(𝑃 (2𝑖)). |𝑃 (2𝑖)| 

Computing: 𝑃(2𝑖) = 2 + 8𝑖, so |𝑃 (2𝑖)| = 
√

68 and 𝜙 = Arg(𝑃 (2𝑖)) = tan−1(4) in Q1 . 

𝑥𝑝(𝑡) = 
cos(2𝑡 − 𝜙) Thus, .√

68 

The characteristic equation is 𝑟2 + 4𝑟 + 6 = 0. This has roots 𝑟 = −2 ± 
√

2 𝑖. 
General homogeneous solution: 𝑥ℎ(𝑡) = 𝑐1𝑒−2𝑡 cos(

√
2𝑡) + 𝑐2𝑒−2𝑡 sin(

√
2𝑡) . 

General solution to the inhomogeneous DE: 𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡) 

Problem 6.31. (a) Solve 𝑥″ + 4𝑥 = cos(𝜔𝑡) for all possible values of 𝜔. 
Solution: We know that 𝑃(𝑖𝜔) = 4 − 𝜔2. In polar form we have 

⎧|4 − 𝜔2| if 0 < 𝜔 < 2 {
𝑃 (𝑖𝜔) = 0 if 𝜔 = 2⎨{⎩|4 − 𝜔2|𝑒𝑖𝜋 if 𝜔 > 2 

So, for 𝜔 ≠ 2, the SRF gives a particular solution 

cos(𝜔𝑡)⎧ if 0 < 𝜔 < 2 { |4−𝜔2|
𝑥𝑝(𝑡) = ⎨{ cos(𝜔𝑡−𝜋) = − cos(𝜔𝑡)⎩ |4−𝜔2| |4−𝜔2| if 𝜔 > 2 

For 𝜔 = 2 we need the extended SRF. First we compute 𝑃 ′(2𝑖) = 4𝑖 = 4𝑒𝜋𝑖/2. So, 

𝑡 cos(2𝑡 − 𝜋/2) 𝑡 sin(2𝑡)𝑥𝑝(𝑡) = = .4 4 

The homogeneous solution is 𝑥ℎ(𝑡) = 𝑐1 cos(2𝑡) + 𝑐2 sin(2𝑡). 
to the linear DE is 𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡). 

As always, the general solution 
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(b) Plot the graph of your particular solution for 𝜔 = 2. 
Solution: We have 𝑥𝑝(𝑡) = 𝑡 sin(2𝑡)/4. 

t

y(t)

π
2

π 3π
2

2π

−6

−4

−2

2

4

6

Resonant response 

Problem 6.32. (a) Show directly from the definition that 𝑃(𝐷) = 𝐷3 + 6𝐷2 + 7𝐼 is a 
linear operator. 
Solution: We have to apply 𝑃 (𝐷) to a linear combination of functions and see that it 
behaves properly, i.e., that for functions 𝑥1, 𝑥2 and constants 𝑐1, 𝑐2 

𝑃 (𝐷)(𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝑃 (𝐷)𝑥1 + 𝑐2𝑃 (𝐷)𝑥2. 

This is always a simple, but tedious, calculation 

𝑃 (𝐷)(𝑐1𝑥1 + 𝑐2𝑥2) = (𝑐1𝑥1 + 𝑐2𝑥2)‴ + 6(𝑐1𝑥1 + 𝑐2𝑥2)″ + 7(𝑐1𝑥1 + 𝑐2𝑥2) 

= 𝑐1(𝑥‴
1 + 6𝑥1

″ + 7𝑥1) + 𝑐2(𝑥‴
2 + 6𝑥2

″ + 7𝑥2) 

= 𝑐1𝑃 (𝐷)𝑥1 + 𝑐2𝑃 (𝐷)𝑥2 

(b) Say to yourself: “Checking linearity is always easy. You just have to remember to ask.” 

Solution: Oh, go on, just say it. 

Problem 6.33. Driving through the spring. Suppose the spring-mass-dashpot is driven 
by a mechanism that positions the end of the spring at 𝑦(𝑡) as shown. As before, 𝑥(𝑡) is the 
position of the mass. We calibrate 𝑥 and 𝑦 so that 𝑥 = 0, 𝑦 = 0 is an equilibrium position 
of the system. 

m

y(t)
x(t)

k

damping coefficient b
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Give the DE modeling the position 𝑥(𝑡) of the mass. Assume, 𝑚, 𝑘, 𝑏, 𝑥, 𝑦 are in compatible 
units. 
Since we control 𝑦(𝑡), it is the input. To model 𝑥(𝑡), we must consider all the forces on 
the mass. At time 𝑡, the spring is stretched an amount 𝑥(𝑡) − 𝑦(𝑡), so the spring force is 
−𝑘(𝑥 − 𝑦). Likewise, the velocity of the damper through the dashpot is 𝑥.̇ So the damping 
force is −𝑏𝑥.̇ Thus, using Newton’s second law, 

𝑚𝑥̈ = −𝑘(𝑥 − 𝑦) − 𝑏 ⇔ ̈ ̇𝑥̇ 𝑚𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝑘𝑦. 

Topic 7: Undetermined coefficients for polynomial input 

Problem 7.34. (Example from Topic 7 notes.) 
Solve 𝑦″ + 5𝑦′ + 4𝑦 = 2𝑡 + 3 by the method of undetermined coefficients. 
Solution: First, we find a particular solution using the method of undetermined coefficients: 
We guess a trial solution of the form 𝑦𝑝(𝑡) = 𝐴𝑡 + 𝐵. Our guess has the same degree as the 
input. 
Substitute the guess into the DE and do the algebra to compute the coefficients. Here is 
one way to present the calculation 

𝑦𝑝 = 𝐴𝑡 + 𝐵 
𝑦𝑝

′ = 𝐴 
𝑦𝑝

″ = 0 
𝑦𝑝

″ + 5𝑦𝑝
′ + 4𝑦𝑝 = 4𝐴𝑡 + (5𝐴 + 4𝐵) 

Substituting this into the DE we get: 

4𝐴𝑡 + (5𝐴 + 4𝐵) = 2𝑡 + 3. 

Now, we equate the coefficients on both sides to get two equations in two unknowns. 

Coefficients of 𝑡 ∶ 4𝐴 = 2 
Coefficients of 1 ∶ 5𝐴 + 4𝐵 = 3 

This is called a triangular system of equations. First we find 𝐴 = 1/2 and then 𝐵 = 1/8. 
1So, 𝑦𝑝(𝑡) = 2𝑡 + 

1 
8. 

Next, we find the solution to the associated homogeneous DE: 𝑦″ + 5𝑦′ + 4𝑦 = 0. 
Characteristic equation: 𝑟2 + 5𝑟 + 4 = 0 ⇒ roots are 𝑟 = −1, −4. 
General homogeneous solution: 𝑦ℎ(𝑡) = 𝑐1𝑒−𝑡 + 𝑐2𝑒−4𝑡. 
Finally, we use the superposition principle to write the general solution to our DE: 

1𝑦(𝑡) = 𝑦𝑝(𝑡) + 𝑦ℎ(𝑡) = 2𝑡 + 
1
8 

+ 𝑐1𝑒−𝑡 + 𝑐2𝑒−4𝑡. 



16 ES.1803 Problem Section Problems for Quiz 2, Spring 2024 Solutions 

Problem 7.35. Solve 𝑥′ + 3𝑥 = 𝑡2 + 𝑡. 
Solution: Guess a trial solution of the form 𝑥𝑝(𝑡) = 𝐴𝑡2 + 𝐵𝑡 + 𝐶 (same degree as the 
input). Substitute the guess into the DE (we don’t show the algebra): 

𝑥′
𝑝 + 3𝑥𝑝 = 3𝐴𝑡2 + (2𝐴 + 3𝐵)𝑡 + (𝐵 + 3𝐶) = 𝑡2 + 𝑡. 

Equate the coefficents of the polynonials on both sides of the equation: 

Coeff. of 𝑡2: 3𝐴 = 1 
Coeff. of 𝑡: 2𝐴 + 3𝐵 = 1 
Coeff. of 1: + 𝐵 +3𝐶 = 0 

This triangular system is easy to solve: 𝐴 = 1/3, 𝐵 = 1/9, 𝐶 = −1/27. Therefore, a 
particular solution is 

1𝑥𝑝(𝑡) = 3𝑡2 + 
1
9𝑡 − 

1 
27 . 

𝑥ℎ(𝑡) = 𝐶𝑒−3𝑡.The homogeneous solution is 

The general solution to the linear DE is 𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡). 

Problem 7.36. Find a particular solution to 𝑥″ + 𝑥′ = 𝑡4. 
Write down the system of equations for 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, but don’t bother solving. 
Solution: We try 𝑥𝑝 = 𝐴𝑡5 + 𝐵𝑡4 + 𝐶𝑡3 + 𝐷𝑡2 + 𝐸𝑡1. (Because the lowest derivative in the 
DE is 𝑥′ must increase all degrees in the guess by 1.) 

Not showing all the algebra, we have 

𝑥″
𝑝 + 𝑥′

𝑝 = 5𝐴𝑡4 + (20𝐴 + 4𝐵)𝑡3 + (12𝐵 + 3𝐶)𝑡2 + (6𝐶 + 2𝐷)𝑡 + (2𝐷 + 𝐸) = 𝑡4. 

Equating coefficients we get the system of equations 

Coeff. of 𝑡4: 5𝐴 = 1 

Coeff. of 𝑡3: 20𝐴+4𝐵 = 0 

Coeff. of 𝑡2: 12𝐵+3𝐶 = 0 

Coeff. of 𝑡: 6𝐶+2𝐷 = 0 

Coeff. of 1: 2𝐷+𝐸 = 0 

Homogeneous solution: The characteristic equation is 𝑟2 + 𝑟 = 0. This has roots 𝑟 = 0, −1. 
The general homogeneous solution is 𝑥ℎ(𝑡) = 𝑐1 + 𝑐2𝑒−𝑡. 
The general solution to the DE is 

𝑥(𝑡) = 𝑥𝑝(𝑡) + 𝑥ℎ(𝑡) = 𝐴𝑡5 + 𝐵𝑡4 + 𝐶𝑡3 + 𝐷𝑡2 + 𝐸𝑡 + 𝑐1 + 𝑐2𝑒−𝑡. 
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Topic 8: Applications: stability 

Problem 8.37. Is the system 𝑥″ + 𝑥′ + 4𝑥 = 0 stable? 

Solution: Short answer: second-order with positive coefficients implies stable . 

Longer answer: characteristic roots are 𝑟 = −1±
√
2
1−16 . Since both roots have a negative 

real part, the system is stable. 

Problem 8.38. Is a 4th order system with roots ±1, −2 ± 3𝑖 stable. Which solutions to 
the homogeneous DE go to 0 as 𝑡 → ∞? 

Solution: No, the root 𝑟 = 1 is positive so the system is not stable. 
The general homogeneous solution is 

𝑥ℎ(𝑡) = 𝑐1𝑒𝑡 + 𝑐2𝑒−𝑡 + 𝑐3𝑒−2𝑡 cos(3𝑡) + 𝑐4𝑒−2𝑡 sin(3𝑡), 

where 𝑐1, 𝑐2, 𝑐3, 𝑐4 are arbitrary constants. 
The solutions that go to 0 are the ones with 𝑐1 = 0, i.e., those of the form 

𝑥(𝑡) = 𝑐2𝑒−𝑡 + 𝑐3𝑒−2𝑡 cos(3𝑡) + 𝑐4𝑒−2𝑡 sin(3𝑡), 

where 𝑐2, 𝑐3, 𝑐4 are arbitrary constants. 

Problem 8.39. For what 𝑘 is the system 𝑥′ + 𝑘𝑥 = 0 stable? 

Solution: Since the characteristic root is 𝑟 = −𝑘, this is stable when 𝑘 > 0. 
A better way to see this is, if 𝑘 > 0 the system is one of exponential decay. If 𝑘 < 0 it is 
one of exponential growth. If 𝑘 = 0 it is an edge case. Some people will say it’s stable but 
not asymptotically stable. 

Problem 8.40. Consider the following systems. 
(i) 𝑥″ + 𝑥′ + 4𝑥 = 0 
(ii) A fourth-order system with roots ±1, −2 ± 3𝑖 
(iii) 𝑥′ + 3𝑥 = 0. 
Draw the pole diagram for each of these systems and say how it relates to the stability of 
the system. 
Solution: The pole diagrams are shown in order for (i), (ii) and (iii). 
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Stability requires all the roots have negative real parts. That is, all the poles are in the left 
half plane. We see that (i) and (iii) are stable, but (ii) is not. 
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Problem 8.41. (a) The pole diagram below on the left shows the characteristic roots of 
the system 𝑃 (𝐷)𝑥 = 0. 
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Left: pole diagram for Part (a). Right: diagram for Part (b) 

(i) What is the order of the system? 

(ii) Is the system stable? 

(iii) Is the system oscillatory? 

(iv) What is the exponential decay rate for the general solution? 

Solution: (i) There are 4 roots, so the order of the system is 4. 
(ii) All the roots have negative real part, so the system is stable. 
(iii) Since some of the roots are complex, the system is oscillatory. 
(iv) The root with the least negative real part, i.e., the right-most root, controls the decay 
rate. The general solution decays like 𝑒−𝑡. 
(b) Repeat Part (a) for the pole diagram on the right. 
Solution: (i) There are 4 roots, so the order of the system is 4. 
(ii) Some roots have positive real part, so the system is unstable. 
(iii) All the roots are real, so the system is not oscillatory. 
(iv) The general system does not decay, it grows like 𝑒3𝑡. We could make a case for saying 
the system decays like 𝑒3𝑡. 
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