ES.1803 Problem Section Problems for Quiz 3, Spring 2024

Topic 9: Amplitude response, resonance and practical resonance

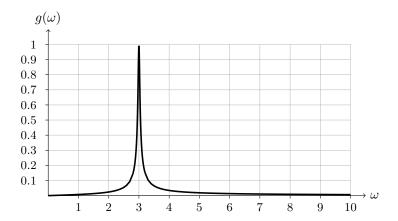
Problem 9.1. Consider the system $x'' + 8x = F_0 \cos(\omega t)$.

- (a) Why is this called a driven undamped system?
- (b) Solve this using the sinusoidal response formula (SRF). Then do it again using complex replacement and the exponential response formula (ERF).
- (c) Consider the right hand side of the DE to be the input. Graph the amplitude response function.
- (d) What is the resonant frequency of the system?
- (e) Why is this called the natural frequency?

Problem 9.2. Consider the forced damped system: $x'' + 2x' + 9x = \cos(\omega t)$.

- (a) What is the natural frequency of the system?
- (b) Find the response of the system in amplitude-phase form.
- (c) Consider the right hand side of the DE to be the input. What is the amplitude response of the system? Draw its graph –be sure to label your axes correctly
- (d) What is the practical resonant frequency?
- (e) When $\omega = \sqrt{7}$ by how many radians does the output peak lag behind the input peak?

Problem 9.3. Consider the system


$$2y'' + 10y' + 3y = 3B\cos(\omega t),$$

where we consider $B\cos(\omega t)$ to be the input. Find and graph the gain. Find the practical resonant frequency.

Problem 9.4. For the forced undamped system $x'' + 8x = F_0 \cos(\omega t)$, give a detailed description of the phase lag for different input frequencies. (Consider $F_0 \cos(\omega t)$ to be the input.)

Problem 9.5. Consider the driven first-order system: $x' + kx = kF_0 \cos(\omega t)$. We'll take the input to be $F_0 \cos(\omega t)$. Solve the DE. Find the amplitude response. Show there is never practical resonance.

Problem 9.6. Below is a gain curve. Suppose the input is $\sum_{n=0}^{100} \cos(nt)$. Give a rough sketch of the output.

${\sf MIT\ OpenCourseWare}$

https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.