ES.1803 Quiz 4 Solutions, Spring 2024

Problem 1. (20 points) $Let A = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 1 & 2 & 3 & 7 \\ 2 & 4 & 6 & 14 \end{bmatrix}'$

(a) (10) Put A in reduced row echelon form.

$$\begin{array}{c} \mathbf{Solution:} & \begin{bmatrix} 1 & 2 & 1 & 3 \\ 1 & 2 & 3 & 7 \\ 2 & 4 & 6 & 14 \end{bmatrix} \xrightarrow{\operatorname{Row}_2 - \operatorname{Row}_1} \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 4 & 8 \end{bmatrix} \xrightarrow{\operatorname{Row}_3 - 2\operatorname{Row}_2} \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\operatorname{Row}_2/2} \xrightarrow{\operatorname{Row}_2/2} \\ \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\operatorname{Row}_1 - \operatorname{Row}_2} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{array}{c} \end{array}$$

(b) (5) Give a basis for the column space of A.

Solution: The pivot columns are Columns 1 and 3. These columns of A give a basis for the column space: $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$, $\begin{vmatrix} 3 \\ 6 \end{vmatrix}$.

(c) (3) What is the dimension of Null(A)?

Solution: Dimension of Null(A) = number of free variables = 2. (d) (2) What is the rank of A?

Solution: There are two pivots, so the rank is 2.

Problem 2. (20 points)

Problem 2. (20 points) The matrix R is in reduced row echelon form: $R = \begin{bmatrix} 1 & -3 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

(a) (10) Give the general solution to the equation $R\mathbf{x} = \begin{bmatrix} 3\\4\\0\\0 \end{bmatrix}$.

Solution: We need Null(R), i.e., the general homogeneous solution. As usual, we format the solution by putting the variables below the matrix. The free variables are x_2 and x_4 . In turn, we set one to 1 and the other to 0 and solve for the pivot variables.

$$\begin{bmatrix} 1 & -3 & 0 & 3\\ 0 & 0 & 1 & 2\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4\\ 3 & 1 & 0 & 0\\ -3 & 0 & -2 & 1 \end{bmatrix}$$

So a basis of Null(R) is $\left\{ \begin{array}{cc} 0\\1\\0\\-2\\1 \end{array} \right\}$, $\left\{ \begin{array}{cc} 0\\-2\\1\\1 \end{array} \right\}$. Since *R* is in RREF, it is easy to see that $\begin{bmatrix} 3\\4\\0\\0 \end{bmatrix} = 3 \cdot \operatorname{Col}_1 + 4 \cdot \operatorname{Col}_3$. So a particular solution is $\mathbf{x}_{\mathbf{p}} = \begin{bmatrix} 3\\0\\4\\0 \end{bmatrix}$. The general solution is $\mathbf{x} = \mathbf{x}_{\mathbf{p}} + \mathbf{x}_{\mathbf{h}} = \begin{bmatrix} 3\\0\\4\\0 \end{bmatrix} + c_1 \begin{bmatrix} 3\\1\\0\\0 \end{bmatrix} + c_2 \begin{bmatrix} -3\\0\\-2\\-2 \end{bmatrix}$.

(b) (10) Find a matrix A with reduced row echelon form R and such that the equations $A\mathbf{x} = \begin{bmatrix} 2\\1\\4\\1 \end{bmatrix} \text{ and } A\mathbf{x} = \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} \text{ can both be solved.}$

Solution: We put $\begin{bmatrix} 2 \\ 1 \\ 4 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$ as pivot columns of A and give the free columns the

same relations to the pivot columns as seen in R.

That is
$$\operatorname{Col}_2 = -3\operatorname{Col}_1$$
 and $\operatorname{Col}_4 = 3\cdot\operatorname{Col}_1 + 2\cdot\operatorname{Col}_3$:
$$A = \begin{bmatrix} 2 & -6 & 1 & 8 \\ 1 & -3 & -1 & 1 \\ 4 & -12 & 0 & 12 \\ 1 & -3 & 0 & 3 \end{bmatrix}$$

Problem 3. (30 points) (a) (10) Let $A = \begin{bmatrix} 6 & -2 \\ 2 & 1 \end{bmatrix}$. Find the general real-valued solution to $\mathbf{x}' = A\mathbf{x}$.

Helpful check: Your eigenvalues should be integers.

Solution: Characteristic equation: det $\begin{bmatrix} 6-\lambda & -2\\ 2 & 1-\lambda \end{bmatrix} = \lambda^2 - 7\lambda + 10 = 0$. So, $\lambda = 2, 5$. Basic eigenvectors: Need basis of $Null(A - \lambda I)$

For
$$\lambda = 2$$
: $A - 2I = \begin{bmatrix} 4 & -2 \\ 2 & -1 \end{bmatrix}$. Take $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
For $\lambda = 5$: $A - 5I = \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$. Take $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
General (real-valued) solution: $\mathbf{x} = c_1 e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c_2 e^{5t} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Note: There are many possible ways to give the answer depending on how you chose your eigenvectors.

(b) (10) Suppose B is a 3×3 matrix with eigenvalues 3, 7, 10 and corresponding eigenvectors $\begin{bmatrix} 1\\4\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}$.

(i) Find det(B). (ii) Find
$$B\left(2\begin{bmatrix}1\\4\\1\end{bmatrix}+4\begin{bmatrix}0\\1\\1\end{bmatrix}\right)$$
. (iii) Find $B^{-1}\begin{bmatrix}1\\4\\1\end{bmatrix}$.

(iv) Give the general solution to the system of DEs $\mathbf{x}' = B^2 \mathbf{x}$.

Solution: (i) det(B) is the product of the eigenvalues = 210.

(ii) Since the vector being multiplied is a linear combination of eigenvectors, the result is

$$B\left(2\begin{bmatrix}1\\4\\1\end{bmatrix}+4\begin{bmatrix}0\\1\\1\end{bmatrix}\right)=6\begin{bmatrix}1\\4\\1\end{bmatrix}+40\begin{bmatrix}0\\1\\1\end{bmatrix}=\begin{bmatrix}6\\64\\46\end{bmatrix}.$$

(iii) Since $\begin{bmatrix} 1\\4\\1 \end{bmatrix}$ is an eigenvector with eigenvalue 3 we have $B^{-1} \begin{bmatrix} 1\\4\\1 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1\\4\\1 \end{bmatrix}$.

(iv) The eigenvalues of B^2 are 3^2 , 7^2 , 10^2 . The eigenvectors are the same as for B. So the

general solution is
$$\mathbf{x} = c_1 e^{9t} \begin{bmatrix} 1\\4\\1 \end{bmatrix} + c_2 e^{49t} \begin{bmatrix} 1\\-1\\1 \end{bmatrix} + c_3 e^{100t} \begin{bmatrix} 0\\1\\1 \end{bmatrix}.$$

(c) (5) Give the diagonalized form of the matrix B from Part (b). That is, write it as a product of certain matrices. You do not have to find inverses explicitly.

Solution: We know $B = S\Lambda S^{-1}$, where $S = \begin{bmatrix} 1 & 1 & 0 \\ 4 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$ is the matrix of eigenvectors and $\Lambda = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 10 \end{bmatrix}$ is the diagonal matrix of eigenvalues. So,

$$B = S\Lambda S^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 4 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 10 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 4 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix}^{-1}$$

(d) (5) Suppose D is a 2×2 matrix with eigenvalues 1 + 2i and 1 - 2i and corresponding eigenvectors $\begin{bmatrix} 1\\ 3i \end{bmatrix}$ and $\begin{bmatrix} 1\\ -3i \end{bmatrix}$.

Give the general real-valued solution to the equation $\mathbf{x}' = D\mathbf{x}$.

Solution: One complex solution is $\mathbf{z}(t) = e^{(1+2i)t} \begin{bmatrix} 1\\ 3i \end{bmatrix}$. So,

$$\mathbf{z}(t) = e^t(\cos(2t) + i\sin(2t)) \begin{bmatrix} 1\\3i \end{bmatrix} = e^t \begin{bmatrix} \cos(2t)\\-3\sin(2t) \end{bmatrix} + ie^t \begin{bmatrix} \sin(2t)\\3\cos(2t) \end{bmatrix}$$

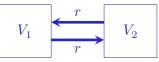
The real and imaginary parts of \mathbf{z} are both solutions to the DE. So,

$$\mathbf{x_1}(t) = \operatorname{Re}(\mathbf{z}) = e^t \begin{bmatrix} \cos(2t) \\ -3\sin(2t) \end{bmatrix} \text{ and } \mathbf{x_2}(t) = \operatorname{Im}(\mathbf{z}) = e^t \begin{bmatrix} \sin(2t) \\ 3\cos(2t) \end{bmatrix}$$

are solutions. The general real-valued solution is $\mathbf{x} = c_1 \mathbf{x_1} + c_2 \mathbf{x_2}$.

Problem 4. (10 points)

Consider the closed two-compartment mixing tank system shown. Let x, y be the amount of salt in tanks 1, 2 respectively. The volumes V_1 , V_2 and the flow rate r are (positive) constants.



Assume compatible units and write down in matrix form the system of DEs governing the amount of salt in the tanks.

Solution:

$$\begin{aligned} x' &= \text{ rate in} - \text{ rate out } = r \cdot \frac{y}{V_2} - r \cdot \frac{x}{V_1} \\ x' &= \text{ rate in} - \text{ rate out } = r \cdot \frac{x}{V_1} - r \cdot \frac{y}{V_2} \end{aligned}$$

In matrix form this is $\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} -\frac{r}{V_1} & \frac{r}{V_2}\\ \frac{r}{V_1} & -\frac{r}{V_2} \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}.$

Problem 5. (20 points)

Give a short explanation for each answer.

(a) (4) Suppose A is a square matrix with RREF R. True or false: A and R have the same eigenvalues.

Solution: False. For example, $A = \begin{bmatrix} 6 & 5 \\ 1 & 2 \end{bmatrix}$ has eigenvalues 1, 7. Its RREF is I, which has eigenvalues 1, 1.

(b) (4) Find the companion system to the DE x'' + 2x' + 7x = 0. Give your answer in matrix form.

Solution: Let y = x', The differential equation becomes

$$y' + 2y + 7x = 0 \qquad \Rightarrow y' = -7x - 2y.$$

The companion system is

$$\begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 0 & 1\\ -7 & -2 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$$

(c) (4) Consider the set of all series of the form $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nt) + \sum_{n=1}^{\infty} b_n \sin(nt)$. Here, a_0, a_n, b_n are parameters that can take arbitrary values. Is this set a vector space?

Solution: Yes. Clearly this set is closed under addition and scalar multiplication.

(d) (4) True or false: Suppose A is a square matrix. If the linear system $A\mathbf{x} = \mathbf{0}$ has more than one solution, then det A = 0.

Solution: <u>True.</u> More than one solution means the null space of A is nontrivial. So A is not invertible, which implies det(A) = 0.

(e) (4) Suppose E is a 2×2 matrix with eigenvalues 1 and -3 and corresponding eigenvectors $\begin{bmatrix} 3\\5 \end{bmatrix}, \begin{bmatrix} 7\\2 \end{bmatrix}$.

Suppose $\begin{bmatrix} x \\ y \end{bmatrix}$ is a solution to the system $\mathbf{x}' = E\mathbf{x}$. As t gets large, the ratio of x to y goes asymptotically to what value?

Solution: 3/5. $\mathbf{x} = c_1 e^t \begin{bmatrix} 3\\5 \end{bmatrix} + c_2 e^{-3t} \begin{bmatrix} 7\\2 \end{bmatrix}$. As t gets large the second term goes to 0, so we have $x \approx 3c_1 e^t$ and $y \approx 5c_1 e^t$. Therefore, the ratio x/y becomes 3/5.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.