ES.1803 Quiz 5 Solutions, Spring 2024

Problem 1. (40 points) (a) (5) Compute $\int_{0^{-}}^{8^{-}} t^2 \left(\delta(t) + 2\delta(t-4) + 4\delta(t-8) + 6\delta(t-16) \right) dt.$

Solution: The spikes at t = 0, 4 are in the interval of integration and those at t = 8, 16 are not. So the integral equals $0^2 + 2 \cdot 4^2 = 32$.

(b) (5) Compute $\int e^{2t} \left(\delta(t) + 2\delta(t-3) \right) dt.$

Solution: We make use of the fact that $f(t)\delta(t-a) = f(a)\delta(t-a)$. So,

$$e^{2t}\bigg(\delta(t) + 2\delta(t-3)\bigg) = \delta(t) + 2e^6\delta(t-3).$$

The indefinite integral is $u(t) + 2e^6u(t-3) + c$.

(c) (5) Consider the following function

$$f(t) = \begin{cases} 0 & \text{for } t < 0\\ 2t & \text{for } 0 < t < 1\\ (t-1)^2 & \text{for } 1 < t < 2\\ 0 & \text{for } 2 < t \end{cases}$$

Find the generalized derivative of f(t).

Solution: Looking at the graph of y = f(t), we have to take the generalized derivative to handle the jumps.

(d) (15) Find the solution to the following DE with the given initial conditions.

 $2x''+8x=3\delta(t-\pi); \quad x(0)=0, \ x'(0)=2.$

Solution: We'll break this into cases before and after the impulse Case $t < \pi$: DE: 2x'' + 8x = 0; IC: x(0) = 0, x'(0) = 2. General solution: $x(t) = c_1 \cos(2t) + c_2 \sin(2t)$. IC: $x(0) = c_1 = 0$. $x'(0) = 2c_2 = 2 \longrightarrow c_2 = 1$. So, $x(t) = \sin(2t)$.

In preparation for the next case: $x(\pi^-) = 0$, $x'(\pi^-) = 2$.

Case $t < \pi$: DE: 2x'' + 8x = 0; IC: $x(\pi^+) = x(\pi^-) = 0$, $x'(\pi^+) = x'(\pi^-) + 3/2 = 7/2$. General solution: $x(t) = c_1 \cos(2t) + c_2 \sin(2t)$. IC: $x(\pi^+) = c_1 = 0$. $x'(\pi^+) = 2c_2 = 7/2 \longrightarrow c_2 = 7/4$. So, $x(t) = \frac{7}{4} \sin(2t)$. All together: $x(t) = \begin{cases} \sin(2t) & \text{for } t < \pi \\ \frac{7}{4} \sin(2t) & \text{for } \pi < t \end{cases}$

(e) (10) Let g(t) be the period 2 function

$$g(t) = \dots + 2\delta(t+4) + 2\delta(t+2) + 2\delta(t) + 2\delta(t-2) + 2\delta(t-4) + 2\delta(t-6) + \dots$$

Find the Fourier series of g(t).

Solution: The half-period is L = 1. We integrate over one period from -1 to 1. The only g(t) term in this interval is $2\delta(t)$. So,

$$\begin{aligned} a_n &= \frac{1}{1} \int_{-1}^1 2\delta(t) \cos(n\pi t) \, dt = 2\cos(0) = 2, \qquad a_0 = \frac{1}{1} \int_{-1}^1 g(t) \, dt = \int_{-1}^1 2\delta(t) \, dt = 2. \\ b_n &= \frac{1}{1} \int_{-1}^1 2\delta(t) \sin(n\pi t) \, dt = 2\sin(0) = 0 \end{aligned}$$

So,
$$g(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(2n\pi t) = \boxed{1 + \sum_{n=1}^{\infty} 2\cos(n\pi t)}.$$

 $\begin{pmatrix} g(t) \\ \dots \\ 2\delta \\ -4 \\ -3 \\ -2 \\ -1 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ t \\ \end{pmatrix}} \frac{g(t)}{2\delta} \underbrace{2\delta \\ 2\delta \\ 2\delta \\ 2\delta \\ 4 \\ t \\ \end{pmatrix}$

Note: Since g(t) is even, we knew without integration that $b_n = 0$.

Problem 2. (15 points)

The periodic function f(t) has Fourier series $f(t) = 3 + 5 \sum_{n=1}^{\infty} \frac{\cos(nt)}{n^2 + 1}$. Find the periodic solution to the DE 3x' + x = f(t).

Solution: We solve one term at a time and then use superpostion.

Constant term: $3x'_0 + x_0 = 3 \Rightarrow x_{0,p}(t) = 3$. Other terms: $3x'_n + x_n = \cos(nt)$. Using the SRF: P(in) = 1+3in. Thus, $|P(in)| = \sqrt{1+9n^2}$, and $\phi(n) = \arg(P(in)) = \tan^{-1}\left(\frac{3n}{1}\right)$ in Q1. So, $x_{n,p}(t) = \frac{\cos(nt - \phi(n))}{|P(in)|} = \frac{\cos(nt - \phi(n))}{\sqrt{1+9n^2}}$. So, by superposition, $x_p(t) = 3 + 5\sum_{n=1}^{\infty} \frac{\cos(nt - \phi(n))}{(n^2 + 1)\sqrt{1+9n^2}}$.

Problem 3. (10 points)

Find the Fourier cosine series for f(x) = 1 + x on the interval $[0, \pi]$.

Solution: The cosine series is $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx)$, where, for $n \neq 0$:

$$\begin{aligned} a_n &= \frac{2}{\pi} \int_0^{\pi} (1+x) \cos(nx) \, dx \\ &= \frac{2}{\pi} \left[\int_0^{\pi} \cos(nx) \, dx + \int_0^{\pi} x \cos(nx) \, dx \right] \\ &= \frac{2}{\pi} \left[0 + \begin{cases} -2/n^2 & n \text{ odd} \\ 0 & n \neq 0 \text{ even} \end{cases} \right] = \begin{cases} -\frac{4}{\pi n^2} & n \text{ odd} \\ 0 & n \neq 0 \text{ even} \end{cases} \end{aligned}$$

(The second integral was computed using the integral table.) For a_0 :

$$a_0 = \frac{2}{\pi} \int_0^{\pi} (1+x) \, dx = 2 + \pi.$$
 So, $f(x) = 1 + \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\cos(nx)}{n^2}$.

Alternatively, use the known Fourier series for tri(x): The even period 2π extension of f is

$$\tilde{f}_e(x) = 1 + \operatorname{tri}(x) = 1 + \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\cos(nx)}{n^2}$$

Problem 4. (15 points)

(a) (5) Let $f(x) = x^2$ on the interval [0, 1].

What is the decay rate for the coefficients of Fourier cosine series for f?

Solution: The even period 2 extension of f has corners. So the coefficients decay like $1/n^2$.

(b) (5) Let $f(t) = \cos(2t) + 2\cos(3t)$. Identify the smallest base period and corresponding fundamental angular frequency for f.

Solution: Every frequency should be a multiple of the fundamental frequency. The greatest common divisor of 2 and 3 is 1, so the fundamental frequency is 1 and the base period is 2π .

Alternatively, $\cos(2t)$ has periods π , 2π , ... and $\cos(3t)$ has periods $2\pi/3$, $4\pi/3$, 2π , The smallest common period is 2π . So base period = 2π , fundamental frequency = 1.

(c) (5) True or false: if the function g(t) is periodic and even, then the periodic solution to 3x' + x = g(t) is also even. You must give a short justification for your answer.

Solution: False. The phase lags can change a function from even to not even.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.