ES.1803 Problem Section Problems for Quiz 5, Spring 2024

Topic 20 Step and delta functions

Problem 20.1. Compute the following integrals.

(a)
$$\int_{-\infty}^{\infty} \delta(t) + 3\delta(t-2) dt$$

(b)
$$\int_{1}^{5} \delta(t) + 3\delta(t-2) + 4\delta(t-6) dt$$
.

Problem 20.2. Compute the following integrals.

(a)
$$\int_{0^{-}}^{\infty} \cos(t)\delta(t) + \sin(t)\delta(t-\pi) + \cos(t)\delta(t-2\pi) dt.$$

(b)
$$\int \delta(t) dt$$
. (Indefinite integral)

(c)
$$\int \delta(t) - \delta(t-3) dt$$
. Graph the solution

Problem 20.3. Solve $x' + 2x = \delta(t)$ with rest IC

Problem 20.4. (a) Solve $2x'' + 8x' + 6x = \delta(t)$ with rest IC.

(b) Plug your solution into the DE and verify that it is correct

Problem 20.5. Solve $x' + 2x = \delta(t) + \delta(t-3)$ with rest IC

Problem 20.6. (Second-order systems) Solve $4x'' + x = 5\delta(t)$ with rest IC.

Problem 20.7. Solve $x' + 3x = \delta(t) + e^{2t}u(t) + 2\delta(t-4)$ with rest IC.

(The u(t) is there to make sure the input is 0 for t < 0.)

Problem 20.8. The graph of the function f(t) is shown below. Compute the generalized derivative f'(t). Identify the regular and singular parts of the derivative.

Problem 20.9. Derivative of a square wave

The graph below is of a function sq(t) (called a square wave). Compute and graph its generalized derivative.

1

Topic 21 Fourier series: basics

Integral table

$$\int t \cos(\omega t) dt = \frac{t \sin(\omega t)}{\omega} + \frac{\cos(\omega t)}{\omega^2}$$

$$\int t \sin(\omega t) dt = -\frac{t \cos(\omega t)}{\omega} + \frac{\sin(\omega t)}{\omega^2}$$

$$\int t^2 \cos(\omega t) dt = \frac{t^2 \sin(\omega t)}{\omega} + \frac{2t \cos(\omega t)}{\omega^2} - \frac{2 \sin(\omega t)}{\omega^3}$$

$$\int t^2 \sin(\omega t) dt = -\frac{t^2 \cos(\omega t)}{\omega} + \frac{2t \sin(\omega t)}{\omega^2} + \frac{2 \cos(\omega t)}{\omega^3}$$

$$\int e^t \cos(\omega t) dt = \frac{e^t \cos(\omega t)}{1 + \omega^2} + \frac{\omega e^t \sin(\omega t)}{1 + \omega^2}$$

$$\int e^t \sin(\omega t) dt = -\frac{\omega e^t \cos(\omega t)}{1 + \omega^2} + \frac{e^t \sin(\omega t)}{1 + \omega^2}$$

$$\int \cos(at) \cos(bt) dt = \frac{1}{2} \left[\frac{\sin((a + b)t)}{a + b} + \frac{\sin((a - b)t)}{a - b} \right]$$

$$\int \sin(at) \sin(bt) dt = \frac{1}{2} \left[-\frac{\cos((a + b)t)}{a + b} + \frac{\cos((a - b)t)}{a - b} \right]$$

$$\int \cos(at) \cos(at) dt = \frac{1}{2} \left[-\frac{\cos((a + b)t)}{a + b} + \frac{\cos((a - b)t)}{a - b} \right]$$

$$\int \cos(at) \cos(at) dt = \frac{1}{2} \left[\frac{\sin(2at)}{2a} + t \right]$$

$$\int \sin(at) \sin(at) dt = \frac{1}{2} \left[-\frac{\sin(2at)}{2a} + t \right]$$

$$\int \sin(at) \cos(at) dt = -\frac{\cos(2at)}{4a}$$

Problem 21.10. For each of the following:

- (i) Find the Fourier series (no integrals needed)
- (ii) Identify the fundamental frequency and corresponding base frequency.
- (iii) Identify the Fourier coefficients \boldsymbol{a}_n and \boldsymbol{b}_n
- (a) cos(2t)

- **(b)** $3\cos(2t \pi/6)$
- (c) $\cos(t) + 2\cos(5t)$
- (d) $\cos(3t) + \cos(4t)$

Problem 21.11. Compute the Fourier series for the odd, period 2π , amplitude 1 square wave.

Problem 21.12. Compute the Fourier series for the period 2π triangle wave

$$f(t) = |t| \text{ for } -\pi < t < \pi.$$

Problem 21.13. Consider the period 1 function given by $f(t) = e^t$ on (0,1).

- (a) Graph the function.
- (b) What would you expect about the decay rate of the Fourier coefficients?
- (c) Compute the Fourier series. The integral table provided might help.

Topic 22: Fourier series: basics continued

Problem 22.14. Let f(t) be the odd, period 2, amplitude 1 square wave. Carefully sketch the graph of the Fourier series.

Problem 22.15. (a) Compute the Fourier series for the even, period 2π function, with $f(t) = \pi t - t^2$ on $[0, \pi]$. The integral table provided should help.

- (b) Carefully sketch the graph of the Fourier series.
- (c) Challenge: Can you explain why the odd cosine coefficients are 0?

Problem 22.16. Recall the Fourier series for the period 2π triangle wave tri(t), where tri(t) = |t| for $-\pi \le t \le \pi$:

$$\operatorname{tri}(t) = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n \text{ odd}} \frac{\cos(nt)}{n^2}.$$

Set t=0 and show $\sum_{n \text{ odd}} \frac{1}{n^2} = \frac{\pi^2}{8}$. (This is only for fun, we will not test on this sort of problem.)

Problem 22.17. The function f(t) has period π . Over the interval $0 \le x < \pi$ we have $f(t) = \sin(t)$. Sketch the graph of f(t) over 3 full periods and find the Fourier series for f(t)

Topic 23: Sine and cosine series; calculation tricks

Integral table

$$\int t \cos(\omega t) \, dt = \frac{t \sin(\omega t)}{\omega} + \frac{\cos(\omega t)}{\omega^2}$$

$$\int t \sin(\omega t) \, dt = -\frac{t \cos(\omega t)}{\omega} + \frac{\sin(\omega t)}{\omega^2}$$

$$\int t^2 \cos(\omega t) \, dt = \frac{t^2 \sin(\omega t)}{\omega} + \frac{2t \cos(\omega t)}{\omega^2} - \frac{2 \sin(\omega t)}{\omega^3}$$

$$\int t^2 \sin(\omega t) \, dt = -\frac{t^2 \cos(\omega t)}{\omega} + \frac{2t \sin(\omega t)}{\omega^2} + \frac{2 \cos(\omega t)}{\omega^3}$$

$$\int \cos(at) \cos(bt) \, dt = \frac{1}{2} \left[\frac{\sin((a+b)t)}{a+b} + \frac{\sin((a-b)t)}{a-b} \right]$$

$$\int \sin(at) \sin(bt) \, dt = \frac{1}{2} \left[-\frac{\sin((a+b)t)}{a+b} + \frac{\sin((a-b)t)}{a-b} \right]$$

$$\int \cos(at) \sin(bt) \, dt = -\frac{1}{2} \left[\frac{\cos((a+b)t)}{a+b} - \frac{\cos((a-b)t)}{a-b} \right]$$

$$\int \cos(at) \cos(at) \, dt = \frac{1}{2} \left[\frac{\sin(2at)}{2a} + t \right]$$

$$\int \sin(at) \sin(at) \, dt = \frac{1}{2} \left[-\frac{\sin(2at)}{2a} + t \right]$$

$$\int \sin(at) \cos(at) \, dt = -\frac{\cos(2at)}{4a}$$

Problem 23.18. Find Fourier cosine series for sin(x) on $[0, \pi]$.

Problem 23.19. Find the Fourier cosine series for the function $f(x) = x^2$ on [0,1]. Graph the function and its even period 2 extension.

Problem 23.20. Find the Fourier series for the standard square wave shifted to the left so it's an even function, i.e., $sq(t + \pi/2)$.

Problem 23.21. Find the Fourier sine series for f(x) = 1 on $[0, \pi]$.

${\sf MIT\ OpenCourseWare}$

https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.