
ES.1803 Problem Section Problems for Quiz 6, Spring 2024 
Solutions 

Topic 24 Linear ODEs with periodic input 

Problem 24.1. Solve 𝑥′ + 𝑘𝑥 = 𝑓(𝑡), where 𝑓(𝑡) is the period 2𝜋 triangle wave with
𝑓(𝑡) = |𝑡| on [−𝜋, 𝜋]. (You can use the known series for 𝑓(𝑡).) 

Solution: We know the Fourier series for 𝑓(𝑡), but we’ll sketch the computation. 
𝑓(𝑡) is even, so 𝑏𝑛 = 0. We use the evenness to simplify the integral for the cosine 
coefficients 

𝜋 𝜋 2 2 if 𝑛 odd 𝜋 𝑛2𝑎0 = 𝑡 𝑑𝑡 = 𝜋, 𝑎𝑛 = 𝑡 cos(𝑛𝑡) 𝑑𝑡 = {− 4 

𝜋 ∫
0 𝜋 ∫

0 0 if 𝑛 ≠ 0 even 

𝜋 cos(𝑛𝑡)So the DE is: 𝑥′ + 𝑘𝑥 = 2 − 4 .𝜋 ∑ 𝑛2
𝑛 𝑜𝑑𝑑 

Superposition: We’ll solve for each piece first: 𝑥𝑛
′ + 𝑘𝑥𝑛 = 𝑛

4
2𝜋 

cos(𝑛𝑡) 

We use the sinusoidal response formula (SRF). First compute 𝑃 (𝑖𝑛) in polar form. 

𝑃 (𝑖𝑛) = 𝑘 + 𝑖𝑛 = √𝑘2 + 𝑛2 𝑒𝑖𝜙(𝑛), where 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = tan−1(𝑛/𝑘) in Q1 . 

4 cos(𝑛𝑡 − 𝜙(𝑛)) = 
4 cos(𝑛𝑡 − 𝜙(𝑛)) .The SRF gives: 𝑥𝑛,𝑝(𝑡) = 𝜋𝑛2|𝑃 (𝑖𝑛)| 𝜋𝑛2√

𝑘2 + 𝑛2 

Separate calculation for 𝑛 = 0: 𝑥′
0 + 𝑘𝑥0 = 𝜋/2 ⇒ 𝑥0,𝑝(𝑡) = 𝜋/2𝑘. 

Superposition: 

𝜋 cos(𝑛𝑡 − 𝜙(𝑛)) 𝑥𝑝(𝑡) = 𝑥0,𝑝 − ∑ 𝑥𝑛,𝑝 = .2𝑘 − 𝜋
4 ∑ 

𝑛2 √
𝑘2 + 𝑛2

𝑛 𝑜𝑑𝑑 𝑛 𝑜𝑑𝑑 

Problem 24.2. (a) Solve 𝑥″ + 2𝑥′ + 9𝑥 = 𝑔(𝑡), where 𝑔(𝑡) is the period 2 triangle wave 
with 𝑔(𝑡) = |𝑡| on [−1, 1]. Find the Fourier series of 𝑔 by using 𝑔(𝑡) = 𝑓(𝜋𝑡)/𝜋, where 𝑓 is 
the standard period 2𝜋 triangle wave 𝑓(𝑡) = |𝑡| on [−𝜋, 𝜋]. 

𝜋 cos(𝑛𝑡)Solution: We know 𝑓(𝑡) = 2 − 
4 . So,𝜋 ∑ 𝑛2

𝑛 𝑜𝑑𝑑 

𝑓(𝜋𝑡) 1 cos(𝑛𝜋𝑡) 𝑔(𝑡) = = 2 − 
4 .𝜋 𝜋2 ∑ 𝑛2

𝑛 𝑜𝑑𝑑 

(Or you can just compute the integrals for the coefficients.) 

Use the SRF to solve for each piece: (For ease of writing, we’ll leave out the coefficients 
here and reintroduce them in the superposition step.) 

𝑥″
𝑛 + 2𝑥′

𝑛 + 9𝑥𝑛 = cos(𝑛𝜋𝑡). 

1 
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First we find 𝑃 (𝑖𝑛) in polar form: 𝑃(𝑖𝜋𝑛) = 9−(𝜋𝑛)2+2𝑖𝜋𝑛 = √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 𝑒𝑖𝜙(𝑛), 
where 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = tan−1(2𝑛𝜋/(9 − 𝜋2𝑛2)) in Q1 or Q2. 

cos(𝑛𝜋𝑡 − 𝜙(𝑛)) So, 𝑥𝑛,𝑝(𝑡) = √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 
. 

Separate calculation for 𝑛 = 0: 𝑥″
0 + 2𝑥0

′ + 9𝑥0 = 2
1 ⇒ 𝑥0,𝑝(𝑡) = 1/18. 

Superposition: 
𝑥𝑛,𝑝 1 cos(𝑛𝜋𝑡 − 𝜙(𝑛)) 𝑥𝑝(𝑡) = 𝑥0,𝑝 − 

4 = 𝜋2 
∑ 𝑛2 18 

− 𝜋
4
2 

∑ 
𝑛2 √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 

. 
𝑛 odd 𝑛 odd 

(Don’t forget you need to include 𝑛 in 𝜙(𝑛).) 

(b) Is there a term in the Fourier series for 𝑔 whose frequency is near the natural frequency 
of the system modeled by the DE? For the response found in Part (a), does this term have 
the largest amplitude? 

Solution: The answers are yes and yes. The undamped, unforced system is 𝑥″ + 9𝑥 = 0. 
This has natural frequency 𝜔0 = 3. The 𝑛 = 1 term in the Fourier series for 𝑔(𝑡) has 
frequency 𝜋 ≈ 3.14 which is close to 𝜔0. 

4The amplitude of the response to the 𝑛th term is It is clear 
𝜋2𝑛2 √(9 − 𝜋2𝑛2)2 + 4𝜋2𝑛2 

. 

that the denominator is smallest for 𝑛 = 1, therefore the amplitude is largest. 

∞ cos(𝑛𝑡)Problem 24.3. Solve 𝑥″ + 4𝑥 = ∑ . Look out for resonance. 𝑛2
𝑛=1 

Solution: Solve this in pieces: 𝑥″
𝑛 + 4𝑥𝑛 = cos(𝑛𝑡): (For practice, we leave out the 

coefficient 1/𝑛2. We’ll need to include it in the superposition at the end.) 

We’ll need 𝑃 (𝑖𝑛) in polar form. 

⎧0 if 𝑛 = 1{
𝑃 (𝑖𝑛) = 4 − 𝑛2 = |4 − 𝑛2|𝑒𝑖𝜙(𝑛), where 𝜙(𝑛) = Arg(𝑃 (𝑖𝑛)) = 𝜋 if 𝑛 ≥ 3 ⎨{⎩undefined if 𝑛 = 2 

𝑥𝑛,𝑝(𝑡) = 
cos(𝑛𝑡 − 𝜙(𝑛)) = 

cos(𝑛𝑡 − 𝜙(𝑛)) Using the SRF, for 𝑛 ≠ 2, we have .|𝑃 (𝑖𝑛)| |4 − 𝑛2| 
For 𝑛 = 2, we need to use the extended SRF: 

𝑃 ′(𝑟) = 2𝑟. So, 𝑃 ′(2𝑖) = 4𝑖 = 4𝑒𝑖𝜋/2 𝑡 cos(2𝑡 − 𝜋/2) . Now the extended SRF gives 𝑥2,𝑝(𝑡) = .4 
cos(𝑡)⎧ for 𝑛 = 1{ 3 
cos(2𝑡−𝜋/2) Summarizing, we have 𝑥𝑛,𝑝(𝑡) = 4 for 𝑛 = 2⎨{ cos(𝑛𝑡−𝜋) ⎩ |4−𝑛2| for 𝑛 ≥ 3. 

Now, by superposition, 
∞ ∞𝑥𝑛,𝑝(𝑡) = 

cos(𝑡) + 
𝑡 cos(2𝑡 − 𝜋/2) cos(𝑛𝑡 − 𝜋) 𝑥𝑝(𝑡) = ∑ + ∑ . 

𝑛=1 
𝑛2 3 16 𝑛=3 

𝑛2|4 − 𝑛2| 
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Finally, using cos(2𝑡 − 𝜋/2) = sin(2𝑡) and cos(𝑛𝑡 − 𝜋) = − cos(𝑛𝑡), we can simplify the 
expression for 𝑥𝑝(𝑡): 

∞ 

+ 
𝑡 sin(2𝑡) cos(𝑛𝑡)𝑥𝑝(𝑡) = 

cos(𝑡) − ∑3 16 𝑛=3 
𝑛2|4 − 𝑛2| 

Topic 25 PDEs: heat and wave equations 

Problem 25.4. (Linearity) Assume we have a heated rod of length 𝐿 with its ends in 
ice baths. We can model this using the heat equation with boundary conditions. 
For functions 𝑢 = 𝑢(𝑥, 𝑡), the PDE 

𝜕𝑢 
𝜕𝑡 (𝑥, 𝑡) = 𝑎𝜕2𝑢(𝑥, 𝑡)

𝜕2𝑥 

is the heat equation. In this problem we want to look at linearity of this equation and also 
of boundary conditions. 

(a) The PDE can be written as (𝜕𝑡 
𝜕 − 𝑎 𝜕𝑥 

𝜕2

2 ) 𝑢 = 0. 

We can use the language of operators: The partial differential operator 𝒯 = ( 
𝜕 
𝜕𝑡 − 𝑎𝜕𝑥 

𝜕2

2 ) 

is called the heat operator. The heat equation is simply 

𝒯𝑢 = 0. 

Show the heat operator is linear. 
Solution: Remember that showing linearity is always easy –you just have to ask the 
question. 
We need to show that 

𝒯(𝑐1𝑢1 + 𝑐2𝑢2) = 𝑐1𝒯𝑢1 + 𝑐2𝒯𝑢2, 
where 𝑐1, 𝑐2 are constants and 𝑢1, 𝑢2 are functions of (𝑥, 𝑡). This follows easily from the 
linearity of (partial) derivatives: 

𝜕(𝑐1𝑢1 + 𝑐2𝑢2) − 
𝜕2(𝑐1𝑢1 + 𝑐2𝑢2)𝒯(𝑐1𝑢1 + 𝑐2𝑢2) = 𝜕𝑡 𝜕𝑥2 

𝜕𝑢1 𝜕𝑢2 𝜕2𝑢1 𝜕2𝑢2= 𝑐1 𝜕𝑡 + 𝑐2 𝜕𝑡 − 𝑐1 𝜕𝑥2 
− 𝑐2 𝜕𝑥2 

= 𝑐1 (
𝜕𝑢1 

𝜕𝑥2 
) + 𝑐2 (

𝜕𝑢2
𝜕𝑡 − 

𝜕2𝑢1 

𝜕𝑡 − 
𝜕
𝜕𝑥 

2𝑢
2
2 ) 

= 𝑐1𝒯𝑢1 + 𝑐2𝒯𝑢2. QED 

(b) Show the heat equation 𝒯𝑢 = 0 is homogeneous. That is, if 𝑢1 and 𝑢2 are solutions 
then so are 𝑐1𝑢1 + 𝑐2𝑢2. 
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Solution: Again, all we have to do is ask the question. This follows by linearity 

𝒯(𝑐1𝑢1 + 𝑐2𝑢2) = 𝑐1𝒯𝑢1 + 𝑐2𝒯𝑢2 = 0. 

(c) The boundary conditions 𝑢(0, 𝑡) = 0 and 𝑢(𝐿, 𝑡) = 0 also have solutions, i.e., functions 
that satisfy the boundary conditions. 
Show the boundary conditions are linear and homogeneous. That is, we can superposition 
solutions and get solutions. 
Solution: Assume 𝑢1 and 𝑢2 satisfy the boundary conditions, i.e. 

𝑢1(0, 𝑡) = 0, 𝑢1(𝐿, 𝑡) = 0, 𝑢2(0, 𝑡) = 0, 𝑢2(𝐿, 𝑡) = 0. 

Let 𝑢(𝑥, 𝑡) = 𝑐1𝑢1(𝑥, 𝑡) + 𝑐2𝑢2(𝑥, 𝑡). Easily 

𝑢(0, 𝑡) = 𝑐1𝑢1(0, 𝑡) + 𝑐2𝑢2(0, 𝑡) = 0, and 𝑢(𝐿, 𝑡) = 𝑐1𝑢(𝐿, 𝑡) + 𝑐2𝑢2(𝐿, 𝑡) = 0. 

This shows that the boundary conditions are linear and homogeneous. 
(d) Show that the combined system of the heat equation plus the given boundary conditions 
is linear and homogeneous. 
Solution: This is just about understanding what’s being asked. The computations are 
trivial. A solution to the combined system is a function 𝑢(𝑥, 𝑡) satisfying 

𝒯𝑢 = 0, 𝑢(0, 𝑡) = 0, 𝑢(𝐿, 𝑡) = 0. 

Linear and homogeneous means that if 𝑢1 and 𝑢2 are solutions then so is 𝑐1𝑢1 + 𝑐2𝑢2 (for 
constants 𝑐1, 𝑐2). This follows directly from the previous parts of this problem. 

Problem 25.5. Consider the following heat equation with boundary conditions. 
PDE: 𝑢𝑡(𝑥, 𝑡) = 4𝑢𝑥𝑥(𝑥, 𝑡), for 0 ≤ 𝑥 ≤ 𝜋, 0 ≤ 𝑡. 
BC: 𝑢(0, 𝑡) = 0, 𝑢(𝜋, 𝑡) = 0. 
(a) Find the general solution. 
Solution: Step 1. Look for separated solutions to the PDE. That is, try a solution of the 
form 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 
Substituting into the PDE gives 

𝑋″(𝑥) 𝑇 ′(𝑡)𝑋(𝑥)𝑇 ′(𝑡) = 4𝑋″(𝑥)𝑇 (𝑡), a little algebra gives = constant = −𝜆 𝑋(𝑥) 4𝑇 (𝑡) 
= 

(Since 𝑥 and 𝑡 are independent variables, when a function of 𝑥 equals a function of 𝑡, both 
must be constant.) 

A little more algebra gives two ordinary differential equations: 

𝑋″ + 𝜆𝑋 = 0 𝑇 ′ + 4𝜆𝑇 = 0. 

The equation for 𝑇 has the solution 𝑇 (𝑡) = 𝑐𝑒−4𝜆𝑡. 
For 𝑋, the characteristic roots are 𝑟 = ±

√
−𝜆. There are 3 cases: 
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Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(
√

𝜆 𝑥) + 𝑏 sin(
√

𝜆 𝑥), 𝑇 (𝑡) = 𝑐𝑒−4𝜆𝑡. 
Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐 

Case (iii) 𝜆 < 0: Can ignore this case. It never produces nontrivial modal solutions. (For 
the record 𝑋(𝑥) = 𝑎𝑒

√
−𝜆 𝑥 + 𝑏𝑒−

√
−𝜆 𝑥.) 

Step 2. Modal solutions (separated solutions which also satisfy the BC) 

For separated solutions, the BC are 𝑋(0) = 0, 𝑋(𝜋) = 0. 
(To see this: The BC 𝑢(0, 𝑡) = 𝑋(0)𝑇 (𝑡) = 0 implies either 𝑋(0) = 0 or 𝑇 (𝑡) = 0. If
𝑇 (𝑡) = 0, then 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡) = 0, i.e., 𝑢 is the trivial solution. So, for nontrivial 
solutions, we must have 𝑋(0) = 0. Likewise, we need 𝑋(𝜋) = 0.) 

Case (i) 𝜆 > 0: BC: 𝑋(0) = 𝑎 = 0, 𝑋(𝜋) = 𝑎 cos(
√

𝜆 𝜋) + 𝑏 sin(
√

𝜆 𝜋) = 0. 
Since 𝑎 = 0, the second condition becomes 𝑏 sin(

√
𝜆 𝜋) = 0. Thus, either 𝑏 = 0 or 

sin(
√

𝜆 𝜋) = 0. 
If 𝑏 = 0, then 𝑋(𝑥) = 0 and all we have found is the trivial solution. 
If sin(

√
𝜆 𝜋) = 0, then 

√
𝜆 = 𝑛 for some integer 𝑛. 

So, for 𝜆 = 
√𝑛, we have found some modal solutions. 

𝑋(𝑥) = 𝑏 sin(𝑛𝑥) and 𝑇 (𝑡) = 𝑐𝑒−4𝜆𝑡 = 𝑐𝑒−4𝑛2𝑡. 

Multiplying these together we get 𝑢(𝑥, 𝑡) = 𝑏𝑐 sin(𝑛𝑥)𝑒−4𝑛2𝑡. 
There is no point in having both constants in the formula, so we drop the 𝑐. Also, to keep 
the solutions for different 𝑛 separate, we add an index. Our modal solutions are 

𝑢𝑛(𝑥, 𝑡) = 𝑏𝑛𝑒−4𝑛2𝑡 sin(𝑛𝑥) for 𝑛 = 1, 2, … 

Case (ii) 𝜆 = 0: BC: 𝑋(0) = 𝑎 = 0, 𝑋(𝜋) = 𝑎 + 𝑏𝜋 = 0. 
The only solution to this is the trivial one 𝑎 = 0, 𝑏 = 0. So this case doesn’t add any new 
modal solutions. 
Case (iii) 𝜆 < 0: Ignore. 
(You can easily check that this case does not produce any nontrivial solutions.) 

Step 3: Using superposition, we get the general solution to the PDE satisfying BC: 
∞ ∞

𝑢(𝑥, 𝑡) = ∑ 𝑢𝑛(𝑥, 𝑡) = ∑ 𝑏𝑛𝑒−4𝑛2𝑡 sin(𝑛𝑥)
𝑛=1 𝑛=1 

(b) Now consider the initial condition (you should graph this). 

for 0 ≤ 𝑥 ≤ 𝜋/2 (IC) 𝑢(𝑥, 0) = 𝑓(𝑥) = {𝑥 

𝜋 − 𝑥 for 𝜋/2 ≤ 𝑥 ≤ 𝜋 

Find the solution to the PDE that satisfies both the BC and the IC. 
Solution: Here’s the graph of 𝑢(𝑥, 0) (the initial temperature distribution). 
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𝑦 

𝑥 𝜋 

𝜋/2 

From the Part (a), we know the general solution to the PDE that satisfies the BC. As usual, 
the IC are used to determine the values of the coefficients. 
Setting 𝑡 = 0 in the general solution, we get: 

𝑢(𝑥, 0) = ∑ 𝑏𝑛 sin(𝑛𝑥) = 𝑓(𝑥) on 0 ≤ 𝑥 ≤ 𝜋 

This is a sine series for 𝑓(𝑥). That is, 𝑏𝑛 are the Fourier sine coefficients: 

𝑏𝑛 = 
𝜋 

𝑓(𝑥) sin(𝑛𝑥) 𝑑𝑥 𝜋
2 ∫ 

0 

We can use the table or compute this integral by parts. (You should be able to do this!) 

𝜋/2 𝜋 

𝑏𝑛 = 𝜋
2 (∫ 𝑥 sin(𝑛𝑥) 𝑑𝑥 + ∫ (𝜋 − 𝑥) sin(𝑛𝑥) 𝑑𝑥) 

0 𝜋/2 

𝜋/2 𝜋 

𝜋
2 ([−𝑥 cos(𝑛𝑥) + 

sin(𝑛𝑥) + [−𝜋 cos(𝑛𝑥) + 
𝑥 cos(𝑛𝑥) − 

sin(𝑛𝑥)= ] ] )𝑛 𝑛2 𝑛 𝑛 𝑛2
0 𝜋/2 

𝜋
2 (−𝜋 cos(𝑛𝜋/2) + 

sin(𝑛𝜋/2) − 
𝜋(−1)𝑛 

+ 
𝜋(−1)𝑛 

+ 
𝜋 cos(𝑛𝜋/2) − 

𝜋 cos(𝑛𝜋/2) + 
sin(𝑛𝜋/2) = )2𝑛 𝑛2 𝑛 𝑛 𝑛 2𝑛 𝑛2 

4 sin(𝑛𝜋/2) = 𝜋𝑛2 

So, (since sin(𝑛𝜋/2) = 1, 0, −1, 0, 1 … for 𝑛 = 1, 2, 3, 4, 5, …) 

4 + 
𝑒−100𝑡 sin(5𝑥) − 

𝑒−196𝑡 sin(7𝑥) 𝑢(𝑥, 𝑡) = 𝜋 
(𝑒−4𝑡 sin(𝑥) − 

𝑒−36𝑡 sin(3𝑥) + …) . 9 25 49 

(c) If this models the temperature of a heated rod, what happens to the temperature over 
time? Which mode is the dominant mode? 

Solution: The temperature goes to 0 over the entire rod. The first mode is the dominant 
one, since it decays the slowest. 
Heat equation applet: Take a look at the applet https://mathlets.org/mathlets/ 
heat-equation/ 

Problem 25.6. Solve the wave equation with boundary and initial equations. 
PDE: 𝑦𝑡𝑡 = 𝑦𝑥𝑥 for 0 ≤ 𝑥 ≤ 1, 𝑡 > 0. 
BC: 𝑦(0, 𝑡) = 0, 𝑦(1, 𝑡) = 0 

IC: 𝑦(𝑥, 0) = 0, 𝑦𝑡(𝑥, 0) = 1. 
Solution: Step 1. Separated solutions: 𝑦(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 

https://mathlets.org/mathlets/heat-equation/
https://mathlets.org/mathlets/heat-equation/
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⇒ 
𝑋″(𝑥) 𝑇 ″(𝑡)Plug into the PDE: 𝑋𝑇 ″ = 𝑋″𝑇 = = constant = −𝜆.𝑋(𝑥) 𝑇 (𝑡) 

This gives us two ordinary differential equations: 

𝑋″ + 𝜆𝑋 = 0 𝑇 ″ + 𝜆𝑇 = 0. 

For 𝑋, the characteristic roots are 𝑟 = ±
√

−𝜆. There are 3 cases: 
Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(

√
𝜆𝑥) + 𝑏 sin(

√
𝜆𝑥), 𝑇 (𝑡) = 𝑐 cos(

√
𝜆𝑡) + 𝑑 sin(

√
𝜆𝑡). 

Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐 + 𝑑𝑡. 
Case (iii) 𝜆 < 0: Ignore this case. (No nontrivial modal solutions.) 

Step 2: Modal solutions (separated solutions which also satisfy the BC) 

For separated solutions, the BC are 𝑋(0) = 0, 𝑋(1) = 0. 
We look at each of the cases: 
Case (i) 𝜆 > 0: BC: 𝑋(0) = 𝑎 = 0„ 𝑋(1) = 𝑎 cos(

√
𝜆) + 𝑏 sin(

√
𝜆) = 0. 

Since 𝑎 = 0, the second condition becomes 𝑏 sin(
√

𝜆) = 0 ⇒ 𝑏 = 0 or sin(
√

𝜆) = 0. 
If 𝑏 = 0, then 𝑋(𝑥) = 0 and all we have found is the trivial solution. 
If sin(

√
𝜆) = 0, then 

√
𝜆 = 𝑛𝜋 for some integer 𝑛. 

So, for 𝜆 = 
√𝑛𝜋, we have 

𝑋(𝑥) = 𝑏 sin(𝑛𝜋𝑥) and 𝑇 (𝑡) = 𝑐 cos(𝑛𝜋𝑡) + 𝑑 sin(𝑛𝜋𝑡). 

Multiplying these together we have 𝑦(𝑥, 𝑡) = 𝑏 sin(𝑛𝜋𝑥)(𝑐 cos(𝑛𝜋𝑡) + 𝑑 sin(𝑛𝜋𝑡)). 
We drop the coefficient 𝑏 (it’s redundant) and index the modal solutions: 

𝑦𝑛(𝑥, 𝑡) = sin(𝑛𝜋𝑥)(𝑐𝑛 cos(𝑛𝜋𝑡) + 𝑑𝑛 sin(𝑛𝜋𝑡)) for 𝑛 = 1, 2, … 

Case (ii) 𝜆 = 0: BC: 𝑋(0) = 𝑎 = 0, 𝑋(1) = 𝑎 + 𝑏 = 0. 
The only solution is 𝑎 = 0, 𝑏 = 0. Thus, we have found only the trivial solution. 
Case (iii) 𝜆 < 0: Ignore – only produces trivial modal solutions. 

Step 3: Using superposition we, get the general solution to the PDE + BC: 
∞ ∞

𝑦(𝑥, 𝑡) = ∑ 𝑦𝑛(𝑥, 𝑡) = ∑ sin(𝑛𝜋𝑥)(𝑐𝑛 cos(𝑛𝜋𝑡) + 𝑑𝑛 sin(𝑛𝜋𝑡)) 
𝑛=1 𝑛=1 

Step 4: Use the initial conditions to determine the coefficients. 
IC 𝑦(𝑥, 0) = 0: 𝑦(𝑥, 0) = ∑ 𝑐𝑛 sin(𝑛𝜋𝑥) = 0. This is a Fourier sine series for 0, i.e., all 
the coefficients 𝑐𝑛 = 0. 
IC 𝑦𝑡(𝑥, 0) = 1: 𝑦𝑡(𝑥, 0) = ∑ 𝑛𝜋𝑑𝑛 sin(𝑛𝜋𝑥) = 1. This is a Fourier sine series for 1 on 
[0,1]. We recognize this as the Fourier series for the odd period 2 square wave. So, 

4 sin(𝑛𝜋𝑥) ∑ 𝑛𝜋𝑑𝑛 sin(𝑛𝜋𝑥) = 1 = .𝜋 ∑ 𝑛 𝑛 𝑜𝑑𝑑 
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for 𝑛 odd for 𝑛 odd That is, 𝑛𝜋𝑑𝑛 = {𝑛𝜋
4 

⇒ 𝑑𝑛 = {𝑛2
4
𝜋2 

0 for 𝑛 even 0 for 𝑛 even. 
Our solution is 

∞ 4 sin(𝑛𝜋𝑥) sin(𝑛𝜋𝑡) 𝑦(𝑥, 𝑡) = ∑ 𝑑𝑛 sin(𝑛𝜋𝑥) sin(𝑛𝜋𝑡) = .𝜋2 
∑ 𝑛2

𝑛=1 𝑛 odd 

Problem 25.7. (This problem uses a cosine series, so the 𝜆 = 0 case is important.) 

(a) Solve the heat equation with insulated ends. 
PDE: 𝑢𝑡 = 3𝑢𝑥𝑥 for 0 ≤ 𝑥 ≤ 1, 𝑡 > 0. 
BC: 𝑢𝑥(0, 𝑡) = 0, 𝑢𝑥(1, 𝑡) = 0 

IC: 𝑢(𝑥, 0) = 𝑥. 
Solution: Step 1: Separated solutions: try 𝑢(𝑥, 𝑡) = 𝑋(𝑥)𝑇 (𝑡). 
Substitution gives 

⇒ 
𝑋(𝑥)″ 𝑇 (𝑡)′ 

𝑋𝑇 ′ = 3𝑋″𝑇 = 3𝑇 (𝑡) 
= constant = −𝜆 ⇒ 𝑋″ + 𝜆𝑋 = 0, 𝑇 ′ + 3𝜆𝑇 = 0.𝑋(𝑥) 

Case (i) 𝜆 > 0: 𝑋(𝑥) = 𝑎 cos(
√

𝜆𝑥) + 𝑏 sin(
√

𝜆𝑥), 𝑇 (𝑡) = 𝑐𝑒−3𝜆𝑡. 
Case (ii) 𝜆 = 0: 𝑋(𝑥) = 𝑎 + 𝑏𝑥, 𝑇 (𝑡) = 𝑐. So, 𝑢(𝑥, 𝑡) = (𝑎 + 𝑏𝑥)𝑐, 
Case (iii) 𝜆 < 0: Ignore, this case never produces nontrivial modal solutions. 

Step 2: Modal solutions (separated solutions which also satisfy the BC) 

For separated soltions, the BC are 𝑋′(0) = 0, 𝑋′(1) = 0. 
Case (i) 𝜆 > 0: BC: 𝑋′(0) = 

√
𝜆𝑏 = 0, 𝑋′(1) = −𝑎

√
𝜆 sin(

√
𝜆) + 

√
𝜆𝑏 cos(

√
𝜆). 

The first condition gives 𝑏 = 0. This implies −𝑎
√

𝜆 sin(
√

𝜆) = 0 ⇒ 𝑎 = 0 or sin(
√

𝜆) = 0. 
We only get nontrivial solutions when sin(

√
𝜆) = 0, i.e., when 

√
𝜆 = 𝑛𝜋 for 𝑛 = 1, 2, …. 

So 𝑋(𝑥) = 𝑎 cos(𝑛𝜋𝑥), 𝑇 (𝑡) = 𝑒−3𝑛2𝜋2𝑡 and we have found modal solutions: 

𝑢𝑛(𝑥, 𝑡) = 𝑎𝑛 cos(𝑛𝜋𝑥)𝑒−3𝑛2𝜋2𝑡 for 𝑛 = 1, 2, … 

(We combined 𝑎 and 𝑐 into one constant and added the index 𝑛.) 

Case (ii) 𝜆 = 0: BC: 𝑋′(0) = 𝑏 = 0 and 𝑋′(1) = 𝑏 = 0. 
So, 𝑏 = 0 and 𝑎 = anything, i.e., 𝑋(𝑥) = 𝑎. 

So we have one more modal solution. Let’s call it 𝑢0 = 𝑎0/2 . 

Case (iii) 𝜆 < 0: Ignore, never produces nontrivial solutions. 

Step 3: Superposition gives the general solution to PDE + BC. 

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + ∑ 𝑢𝑛(𝑥, 𝑡) = 
𝑎
2
0 + ∑ 𝑎𝑛 cos(𝑛𝜋𝑥)𝑒−3𝑛2𝜋2𝑡 

𝑛 
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Step 4: Use the IC to determine the values of the coefficients. 
𝑎0IC: 𝑢(𝑥, 0) = 2 

+ ∑ 𝑎𝑛 cos(𝑛𝜋𝑥) = 𝑥. 
𝑛 

This is the cosine series for the function 𝑓(𝑥) = 𝑥. (Note, we were clever to arrange things 
so the constant term is 𝑎0/2.) The cosine series for 𝑥 is the same as the Fourier series 
for a scaled triangle wave. You can work out the scaling or just compute the integrals 

= {−𝑛2𝜋2 for 𝑛 odd 𝑎𝑛 = 2 ∫
1

𝑥 cos(𝑛𝜋𝑥) 𝑑𝑥. Either way you get 𝑎0 = 1, 𝑎𝑛 

4 

0 0 for 𝑛 even. 
Thus, 

1 cos(𝑛𝜋𝑥) 𝑒−3𝑛2𝜋2𝑡 

𝑢(𝑥, 𝑡) = 2 − 
4 .𝜋2 

∑ 𝑛2
𝑛 odd 

(b) Write out explicitly (compute values of coefficients) the first 4 nonzero terms when
𝑡 = 1/32, i.e., write the first four terms of 𝑢(𝑥, 1/32). Use this to explain why, after a very 
short time, the constant and 𝑛 = 1 term give a very good approximation of the solution. 
Solution: Using a calculator: 

1𝑢(𝑥, 1/32) = 2 
− 𝜋

4
2 

(𝑒−3𝜋2/32 cos(𝜋𝑥) + 
𝑒−27𝜋2/32 

cos(3𝜋𝑥) + 
𝑒−25𝜋2/32 

cos(5𝜋𝑥) + …) 9 25 

= 0.5 − 0.505 ∗ cos(𝜋𝑥) − 3.42 × 10−5 cos(3𝜋𝑥) − 4.58 × 10−12 cos(5𝜋𝑥) − … . 

The coefficients of the terms with 𝑛 = 3 and higher are so small compared to the 𝑛 = 1 
term that, for 𝑡 > 1/32, we have the excellent approximation 

𝑢(𝑥, 𝑡) ≈ 0.5 − 
4𝑒−3𝜋2𝑡 

cos(𝜋𝑥). 𝜋 

Topic 26: Continuation; applications to sound. 

Problem 26.8. (a) Find the general solution to the following heat equation with inhomo-
geneous boundary conditions 

PDE: 𝑢𝑡(𝑥, 𝑡) = 4𝑢𝑥𝑥(𝑥, 𝑡), for 0 ≤ 𝑥 ≤ 𝜋, 0 ≤ 𝑡. 
BC: 𝑢(0, 𝑡) = 1, 𝑢(𝜋, 𝑡) = 2. 
This has inhomogeneous boundary conditions. So we will use the strategy of finding a par-
ticular solution to the above and adding the general solution to the associated homogeneous 
equation. The homogeneous equation is a Topic 25 problem. Here is the solution: 

∞
𝑢ℎ(𝑥, 𝑡) = ∑ 𝑏𝑛𝑒−4𝑛2𝑡 sin(𝑛𝑥)

𝑛=1 

(If you haven’t solved that problem yet, you should do that now.) 
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Solution: Our strategy is to find the general homogeneous solution by our previous meth-
ods and then guess at a particular solution to the inhomogeneous equation. 
The homogeneous equation is 

(H-PDE) 𝑢𝑡(𝑥, 𝑡) = 4𝑢𝑥𝑥(𝑥, 𝑡), for 0 ≤ 𝑥 ≤ 𝜋, 0 ≤ 𝑡. 
(H-BC) 𝑢(0, 𝑡) = 0, 𝑢(𝜋, 𝑡) = 0. 
We gave the homogeneous solution above. If you haven’t done this problem yet, you prob-
ably should try it now! 

∞
𝑢ℎ(𝑥, 𝑡) = ∑ 𝑏𝑛𝑒−4𝑛2𝑡 sin(𝑛𝑥)

𝑛=1 

For the particular solution we notice that the boundary conditions only depend on 𝑥, so 
we’ll guess a steady state solution, i.e., one that doesn’t change in time: 

𝑢𝑝(𝑥, 𝑡) = 𝑋(𝑥) 

Substituting this into the PDE we get: 0 = 4𝑋″(𝑥), so 𝑋(𝑥) = 𝑎 + 𝑏𝑥. Now matching the 
inhomogeneous BC we get 

1𝑋(0) = 𝑎 = 1 and 𝑋(𝜋) = 𝑎 + 𝑏𝜋 = 2 ⇒ 𝑎 = 1, 𝑏 = 𝜋 
. 

Our finished solution to the problem is 

∞
𝑢(𝑥, 𝑡) = 𝑢𝑝(𝑥, 𝑡) + 𝑢ℎ(𝑥, 𝑡) = 1 + 

𝑥 ∑ 𝑏𝑛𝑒−4𝑛2𝑡 sin(𝑛𝑥)𝜋 
+ 

𝑛=1 

(b) Find the solution that also satisfies the initial condition 𝑢(𝑥, 0) = 2. 
Solution: Using the solution from Part (a), we have 

∞
𝑢(𝑥, 0) = 1 + 𝑥/𝜋 + ∑ 𝑏𝑛 sin(𝑛𝑥) = 2 

𝑛=1 

∞ 

Rearranging terms we get: ∑ 𝑏𝑛 sin(𝑛𝑥) = 1 − 𝑥/𝜋. So the 𝑏𝑛 are the Fourier sine 

coefficients for 1 − 𝑥/𝜋. 
𝑛=1 

𝑏𝑛 = 
𝜋
(1 − 𝑥/𝜋) sin(𝑛𝑥) 𝑑𝑥 =𝜋

2 ∫ 𝑛𝜋
2 

0 

(We’ll let you look up or compute the integrals.) Thus, 

∞ 𝑒−4𝑛2𝑡 sin(𝑛𝑥)𝑢(𝑥, 𝑡) = 1 + 
𝑥 ∑ .𝜋 + 𝜋

2 
𝑛 𝑛=1 
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