ES.1803 Quiz 6, Spring 2024

3 problems, No books, notes or calculators.

There is a useful table on the last page of this quiz.

Problem 1. (20 points)

(a) (15) Find the periodic solution to the DE x'' + x' + 17x = 1 + sq(t), where sq(t) is our usual odd, period 2π , amplitude 1 square wave.

(b) (5) The period 2π impulse train has Fourier series $f(t) = \frac{1}{2\pi} + \frac{1}{\pi} \sum_{n=1}^{\infty} \cos(nt)$. Without solving the DE, say which term in the expansion of f(t) causes the biggest response in the system x'' + x' + 17x = f(t)?

Problem 2. (30 points) For this problem we have a vibrating string of length π . The amplitude is given by y(x,t), where x is the position along the string and t is time. The vibration is modeled by the wave equation

PDE:
$$y_{tt}(x,t) = 9y_{xx}(x,t), \qquad 0 \le x \le \pi, \quad t \ge 0.$$

The ends of the string are set, so that they satisfy the boundary conditions

BC:
$$y_x(0,t) = 0$$
, $y_x(\pi,t) = 0$.

Find the general solution to this PDE with these boundary conditions. You must show all the steps leading to the solution.

Problem 3. (25 points) Recall the PDE (heat equation) with BC: PDE: $w_t(x,t) = w_{xx}(x,t), \quad t \ge 0, \quad 0 \le x \le \pi.$ BC: $w(0,t) = 0, \quad w(\pi,t) = 0.$

We have seen many times that the general solution to this is $w(x,t) = \sum_{n=1}^{\infty} b_n \sin(nx) e^{-n^2 t}$.

(a) (10) Now consider the inhomogeneous PDE and BC:

$$\begin{split} \text{IPDE:} \quad u_t(x,t) &= u_{xx}(x,t)-2, \qquad 0 \leq x \leq \pi, \quad t \geq 0.\\ \text{IBC:} \quad u(0,t) &= 0, \quad u(\pi,t) = \pi^2. \end{split}$$

Give the general solution to IPDE and IBC:

Hint: Start by guessing a steady-state (time independent) particular solution.

(b) (10) Suppose that initially the rod has temperature $u(x, 0) = x^2 + x$. Find the solution from Part (a) with these initial conditions.

(c) (5) Estimate the temperature of the rod at position $x = \pi/2$ at time t = 1, i.e., estimate $u(\pi/2, 1)$. You must give a finite numerical expression for the answer. Justify your answer, but you don't need to simplify the expression.

Integrals (for n a positive integer)

$$1. \int t\sin(\omega t) dt = \frac{-t\cos(\omega t)}{\omega} + \frac{\sin(\omega t)}{\omega^2}.$$

$$1'. \int_0^{\pi} t\sin(nt) dt = \frac{\pi(-1)^{n+1}}{n}.$$

$$2. \int t\cos(\omega t) dt = \frac{t\sin(\omega t)}{\omega} + \frac{\cos(\omega t)}{\omega^2}.$$

$$1'. \int_0^{\pi} t\sin(nt) dt = \frac{\pi(-1)^{n+1}}{n}.$$

$$2'. \int_0^{\pi} t\cos(nt) dt = \begin{cases} \frac{-2}{n^2} & \text{for } n \text{ odd} \\ 0 & \text{for } n \neq 0 \text{ even} \end{cases}$$

$$3. \int t^2 \sin(\omega t) dt = \frac{-t^2 \cos(\omega t)}{\omega} + \frac{2t\sin(\omega t)}{\omega^2} + \frac{2\cos(\omega t)}{\omega^3}.$$

$$3'. \int_0^{\pi} t^2 \sin(nt) dt = \begin{cases} \frac{\pi^2}{n} - \frac{4}{n^3} & \text{for } n \text{ odd} \\ -\frac{\pi^2}{n} & \text{for } n \neq 0 \text{ even} \end{cases}$$

$$4. \int t^2 \cos(\omega t) dt = \frac{t^2 \sin(\omega t)}{\omega} + \frac{2t\cos(\omega t)}{\omega^2} - \frac{2\sin(\omega t)}{\omega^3}.$$

$$4'. \int_0^{\pi} t^2 \cos(nt) dt = \frac{2\pi(-1)^n}{n^2}$$
If $a \neq b$

$$5. \int \cos(at) \cos(bt) dt = \frac{1}{2} \left[\frac{\sin((a+b)t)}{\omega} + \frac{\sin((a-b)t)}{\omega^2} \right]$$

5.
$$\int \cos(at) \cos(bt) dt = \frac{1}{2} \left[-\frac{\cos(a+b)t}{a+b} + \frac{\cos(a-b)t}{a-b} \right]$$

6.
$$\int \sin(at) \sin(bt) dt = \frac{1}{2} \left[-\frac{\sin((a+b)t)}{a+b} + \frac{\sin((a-b)t)}{a-b} \right]$$

7.
$$\int \cos(at) \sin(bt) dt = \frac{1}{2} \left[-\frac{\cos((a+b)t)}{a+b} + \frac{\cos((a-b)t)}{a-b} \right]$$

8.
$$\int \cos(at) \cos(at) dt = \frac{1}{2} \left[\frac{\sin(2at)}{2a} + t \right]$$

9.
$$\int \sin(at) \sin(at) dt = \frac{1}{2} \left[-\frac{\sin(2at)}{2a} + t \right]$$

10.
$$\int \sin(at) \cos(at) dt = -\frac{\cos(2at)}{4a}$$

Some Fourier series:

- 1. Period 2π square wave sq(t): You should know this for the quiz.
- 2. Period 2 triangle wave tri2(t):

 $\label{eq:over one period} \text{Over one period}, \, -1 \leq t \leq 1, \ \ \text{tri2}(t) = |t|.$

$$\begin{split} \operatorname{tri2}(t) &= \frac{1}{2} - \frac{4}{\pi^2} \left(\cos(\pi t) + \frac{\cos(3\pi t)}{3^2} + \frac{\cos(5\pi t)}{5^2} + \cdots \right) \\ &= \frac{1}{2} - \frac{4}{\pi^2} \sum_{n \text{ odd}} \frac{\cos(n\pi t)}{n^2}. \end{split}$$

End of quiz

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.