
ES.1803 Problem Section Problems for Quiz 7, Spring 2024 
Solutions 

This sheet contains problem section problems for Topics 27-30. Problem section problems 
for Topics 10-12 are in a separate file. Those for all other topics are posted with review for 
previous quizzes. 

1 Systems of DEs 

Topic 27 Phase portraits of linear 2×2 systems. 

Problem 27.1. Draw a phase protrait of x ′ = 𝐴x, where 𝐴 = [ 
0

−2 
2
0]. What type of 

critical point is at the origin? Is it dynamically stable? 

Solution: First we find the eigenvalues. The characteristic equation is 

𝜆2 − tr(𝐴)𝜆 + det(𝐴) = 𝜆2 + 4 = 0. 
So the eigenvalues are ±2𝑖. This means the critical point is a center . 
The direction of rotation can be found by looking at the tangent vector at (1, 0): 

x ′ = 𝐴 [1
0] = [−2

0 ] . 

This tangent vector points down, which means that the ellipse is moving downwards at 
point (1, 0) and so is moving clockwise. 
Equivalently and more quickly: Because the 2, 1 entry of 𝐴 is negative, we know the tra-
jectory turns in a clockwise manner. 
A center is on the boundary between dynamically asymptotically stable spiral sinks and 
dynamically unstable spiral sources. We call it an edge case. It is sometimes described as 
stable but not asymptotically stable. 
For a center, when sketching a qualitative view of the phase portrait there is no need for 
eigenvectors. The trajectories are ellipses, which we have seen turn in a clockwise manner. 
For this system, the ellipses turn out to be perfect circles. 

𝐴 = [−1 2Problem 27.2. Draw a phase protrait of x ′ = 𝐴x, where What type of−2 −1]. 

critical point is at the origin? Is it dynamically stable? 

1 
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Solution: The characteristic equation is 𝜆2 + 2𝜆 + 5 = 0. So the eigenvalues are −1 ± 2𝑖. 
Thus the critical point at the origin is a spiral sink. Since the 2, 1 entry of 𝐴 is negative. 
The spiral turns in a clockwise manner. Spiral sinks are dynamically stable. 
For spiral sinks, a qualitative phase portrait does not require computing the eigenvectors. 
By hand, we would just sketch clockwise spirals, spiraling in. (Of course, the graphing 
program we used here is more exact.) 

2Problem 27.3. Draw a phase protrait of x ′ = 𝐴x, where 𝐴 = [ 1 
1]. What type of−2 

critical point is at the origin? Is it dynamically stable? 

Solution: The characteristic equation is 𝜆2 − 2𝜆 + 5 = 0. So the eigenvalues are 1 ± 2𝑖. 
Thus the critical point at the origin is a spiral source. Since the 2, 1 entry of 𝐴 is negative. 
The spiral turns in a clockwise manner. Spiral sources are dynamically unstable. 
For spiral sources, a qualitative phase portrait does not require computing the eigenvectors. 
By hand, we just sketch clockwise spirals, spiraling out. 

1Problem 27.4. Draw a phase protrait of x ′ = 𝐴x, where 𝐴 = [1 
1]. What type of3 

critical point is at the origin? Is it dynamically stable? 

Solution: The characteristic equation is 𝜆2 − 2𝜆 − 2 = 0. So the eigenvalues are 1 ± 
√

3. 
Since the eigenvalues have opposite signs, the critical point at the origin is a saddle. Saddles 
are dynamically unstable. 
For saddles, a qualitative phase portrait requires computing the eigenvectors. We find that 

an eigenvector corresponding to 𝜆 − 1 + 
√

3 is [√1
3], and one corresponding to 𝜆 = 1 − 

√
3 
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is [−
√1 

3] 

The modes give trajectories that are half lines. One mode has lines going out from the 
origin, and one has lines going in towards the origin. The mixed modal solutions are curves 
asymptotic to the modal trajectories at 𝑡 = ±∞. 

Problem 27.5. Draw the trace-determinant diagram. Label all the parts with the type 
and dynamic stability of the critical point at the origin. Which types represent structurally 
stable systems? 

Solution: Here is the diagram: 

tr(A)

det(A)

Spiral source
λ = α± iβ, α > 0
dynam. unstable
structurally stable

Spiral sink
λ = α± iβ, α < 0
dynamically stable
structurally stable

Nodal source
λ real: +, +
dyanmically unstable
structurally stable

Nodal sink
λ real: −, −
dynamically stable
structurally stable

Saddle
λ real: +, −
dynamically unstable
structurally stable

Degenerate
λ real: +, 0
stability: edge case
structurally unstable

Degenerate
λ real: −, 0
dynamically unstable
structurally unstable

Defective or star node
λ real repeated: +
dynamically unstable
structurally unstable

Defective or star node
λ real repeated: −
dynamically stable
structurally unstable

Center
λ pure imaginary
stability: edge case
structurally unstable

The open regions in the diagram all represent structurally stable systems. That is, nodal 
sources, spiral sources, nodal sinks, spiral sinks and saddles are all structurally stable. 
The lines represent structurally unstable systems, i.e., defective and star nodes, centers, 
degenerate systems. 
(b) Give the equation for the parabola in the diagram. Explain where is comes from. 
Solution: The characteristic equation is 𝜆2 − tr(𝐴) 𝜆 + det(𝐴) = 0. Therefore, the eigen-
values are 

tr(𝐴) ± √tr(𝐴)2 − 4 det(𝐴)𝜆 = .2 
The parabola is the dividing line between real and imaginary root. That is it’s where the 



1 SYSTEMS OF DES 4 

discriminant (part under the square root) is 0. Its equation is 

tr(𝐴)2 

tr(𝐴)2 − 4 det(𝐴) = 0 ⇔ det(𝐴) = .4 

Problem 27.6. Consider the linear system x ′ = 𝐴x. 
(a) Suppose 𝐴 has tr(𝐴) = −2.5 and det(𝐴) = 1. Locate this system on the trace-
determinant diagram. For this system, what is the type of the critical point at the origin? 

Solution: The diagram below shows the trace-determinant plane with the dividing lines 
included. The parabola has equation det(𝐴) = tr(𝐴)2/4. The point (−2.5, 1) is plotted. 
Since it is below the parabola in the third quadrant, it represents a nodal sink. 

tr(A)

det(A)

Nodal sink

(b) Compute the eigenvalues of this system and verify your answer in Part (a). 
Solution: The characteristic equation is 

𝜆2 − tr(𝐴)𝜆 + det(𝐴) = 𝜆2 + 2.5𝜆 + 1 = 0. 

−2.5 ± 
√

6.25 − 4 Therefore, the eigenvalues are = −0.5, −2. Since these are real and2
negative, the critical point at the origin is a nodal sink. This matches the answer in Part 
(a). 

Topic 28 Phase portraits of nonlinear 2×2 systems. 
Problem 28.7. (a) Sketch the phase portrait for 𝑥′ = −𝑥 + 𝑥𝑦, 𝑦′ = −2𝑦 + 𝑥𝑦. 
Solution: First we find the critical points by factoring the equations: 
𝑥′ = 𝑥(−1 + 𝑦) = 0 ⇒ 𝑥 = 0 or 𝑦 = 1
𝑦′ = 𝑦(−2 + 𝑥) = 0 ⇒ 𝑥 = 2 or 𝑦 = 0 

So the only critical points are (0, 0) and (2, 1). 
𝑓𝑦] = [−1 + 𝑦 𝑥 Jacobian: 𝐽(𝑥, 𝑦) = [𝑓𝑥 

𝑔𝑥 𝑔𝑦 𝑦 −2 + 𝑥] 

At (0,0): 𝐽(0, 0) = [−1 0
0 −2] 
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This is the coefficient matrix 𝐴 of our linearized system as (0,0). The eigenvalues are -1, 
-2, so this is a linearized nodal sink. Since nodal sinks are structurally stable, we also have 
a nonlinear nodal sink. 
(As an aside, it is worth noting that the eigenvectors lie along the axes and clearly there 
are trajectories along each axis, i.e., if 𝑦 = 0 the trajecory is along the 𝑥-axis.) 

At (2,1): 𝐽(2, 1) = [0
1 0

2]. 

This is the coefficient matrix 𝐴 of our linearized system as (2,1). The eigenvalues are ±
√

2, 
so this is a linearized saddle. Since saddles are structurally stable, we also have a nonlinear 
saddle. 
In order to sketch, we find the eigenvectors of the saddle: 
The eigenvector equation is: (𝐴 − 𝜆𝐼)v = 0, 

𝜆 = 
√

2: 𝐴 − 𝜆𝐼 = [−
√

1
2 

−
√2

2]. Take v = [√2
2]. 

𝜆 = −
√

2: 𝐴 − 𝜆𝐼 = [
√

1
2 √2

2]. Take v = [−
√2 

2]. 

Now we can sketch the linearized systems near each critical point and tie them together. 

(b) Consider 𝑥 and 𝑦 to be the sizes of two interacting populations. Tell a story about the 
populations. 
Solution: Alone each population has equation 𝑥′ = −𝑥 and 𝑦′ = −𝑦. So each would die 
off without the other. The interaction term 𝑥𝑦 is positive in both cases, so it seems these 
species cooperate to try to survive. 
Unfortunately, it looks like there is a doomsday-extinction scenario. Depending on the 
initial conditions, Either the populations still die off to 0 (extinction) or else they explode 
to infinity (doomsday). 

Problem 28.8. Sketch the phase portrait for 𝑥′ = 𝑥2 − 𝑦, 𝑦′ = 𝑥(1 − 𝑦). 
Draw one phase portrait for each possibility for the non-structurally stable critical point. 
Solution: First we find the critical points. 
Factoring the second equation: 𝑦′ = 𝑥(1 − 𝑦) = 0 ⇒ 𝑥 = 0 or 𝑦 = 1. 
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Using these values in the second equation, 𝑥′ = 𝑥2 − 𝑦 = 0 we find three critical points: 
(0, 0), (1, 1), (−1, 1). 

Jacobian: 𝐽(𝑥, 𝑦) = [ 
2𝑥 −1

1 − 𝑦 −𝑥]. 

At (0, 0): 𝐽(0, 0) = [0 −1 The eigenvalues are ±𝑖, so this is a linearized center. The 1 1 0 ]. 

in the lower left entry of the matrix implies it turns counterclockwise. 
Since centers are not structurally stable, we can’t be sure the nonlinear system has a center 
at (0, 0). It could be a center, spiral source or spiral sink. We sketch all three possibilities 
below. 

−1At (1, 1): 𝐽(1, 1) = [2 
−1]. The eigenvalues are 2, −1, so this is a linearized saddle. Since 0 

saddles are structurally stable, we also have a nonlinear saddle. 
In order to sketch, we find basic eigenvectors: 

𝜆 = 2: Take v = [1
0]. 𝜆 = −1: Take v = [3

1]. 

−1At (−1, 1): 𝐽(−1, 1) = [−2 
1 

]. The eigenvalues are −2, 1, so this is a linearized saddle. 0 
Since saddles are structurally stable, we also have a nonlinear saddle. 
In order to sketch, we find basic eigenvectors: 

𝜆 = −2: Take v = [1
0]. 𝜆 = 1: Take v = [ 

1
−3]. 

Here are sketches showing the three possible trajectories near the structurally unstable 
critical point. 

Nonlinear center at (0,0) Nonlinear spiral sink at (0,0) Nonlinear spiral source at (0,0) 

Problem 28.9. Structural stability using the trace-determinant diagram: Will a non-
structurally stable linearized critical point correctly predict the behavior of the nonlinear 
system at that point? 

Solution: Not necessarily. The linearized system is just an approximation of the nonlinear 
system. Non-structurally stable linearized systems might be qualitatively different from the 
nonlinear system they are approximating. 
In the trace-determinant diagram the non-structurally stable systems are plotted on the 
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boundary between different structurally stable systems. 
For example, a system with a linearized center at a critical point might be a nonlinear center 
or spiral. Here is a system which has a linearized center at the origin: 

𝑥′ = −𝑦 + 𝑎 ⋅ 𝑥3, 𝑦′ = 𝑥 + 𝑎 ⋅ 𝑦 ⋅ 𝑥2. 

−1Clearly, for any value of 𝑎, the origin is a critical point. Also, for any 𝑎, 𝐽(0, 0) = [0 
0 

].1 
So the origin is a linearized center (turning counterclockwise). 
If 𝑎 = 0, the system is linear and the critical point is a genuine center. If 𝑎 < 0 the origin 
is a nonlinear spiral sink. If 𝑎 > 0 it is a nonlinear spiral source. 
For drawing, we actually used the system: 𝑥′ = −𝑦 + 𝑎𝑥 ⋅ |𝑥|𝑏, 𝑦′ = 𝑥 + 𝑎𝑦|𝑥|𝑏. The pa-
rameter 𝑏 > 0 is just there to make the spirals look nice, any positive value will gives spirals. 

Center: 𝑎 = 0 Sink: 𝑎 = −0.4, 𝑏 = 0.2 Source: 𝑎 = 0.04, 𝑏 = 0.2 

Problem 28.10. For the following system, draw the phase portrait by linearizing at the 
critical points. 

𝑥′ = 1 − 𝑦2, 𝑦′ = 𝑥 + 2𝑦. 

Solution: First we find the critical points. 

𝑥′ = 1 − 𝑦2 = 0 ⇒ 𝑦 = ±1 

𝑦′ = 𝑥 + 2𝑦 = 0 ⇒ 𝑥 = −2𝑦. 

So the only critical points are (−2, 1) and (2, −1). 
𝑓𝑦 −2𝑦 Jacobian: 𝐽(𝑥, 𝑦) = [𝑓𝑥 ] = [0

𝑔𝑥 𝑔𝑦 1 2 ] 

At (-2,1): 𝐽(−2, 1) = [0 −2
1 2 ] 

This has eigenvalues are 1 ± 𝑖, so the critical point is is a linearized spiral source. The 1 in 
the lower left entry tells us it turns counterclockwise. Since spiral sources are structurally 
stable, we also have a nonlinear spiral source. 

2At (2,-1): 𝐽(2, −1) = [0 
2].1 
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This has eigenvalues 1 ± 
√

3, so this is a linearized saddle. Since saddles are structurally 
stable, we also have a nonlinear saddle. 
In order to sketch, we find the eigenvectors: 
The eigenvector equation is: (𝐴 − 𝜆𝐼)v = 0, 

2 2𝜆 = 1 + 
√

3: 𝐴 − 𝜆𝐼 = [−1 − 
1

√
3 

1 − 
√

3]. Take v = [1 + 
√

3]. 

2 2𝜆 = 1 − 
√

3: 𝐴 − 𝜆𝐼 = [−1 + 
1

√
3 

1 + 
√

3]. Take v = [1 − 
√

3]. 

Now we can sketch the linearized systems near each critical point and tie them together. 

Problem 28.11. For the following system, draw the phase portrait by linearizing at the 
critical points. 

𝑥′ = 𝑥 − 𝑦 − 𝑥2 + 𝑥𝑦, 𝑦′ = −𝑦 − 𝑥2. 

Solution: First we find the critical points. 

𝑥′ = 𝑥 − 𝑦 − 𝑥2 + 𝑥𝑦 = 0 

𝑦′ = −𝑦 − 𝑥2 = 0. 
The second equation implies 𝑦 = −𝑥2. Putting this into the first equation gives 

𝑥 + 𝑥2 − 𝑥2 − 𝑥3 = 𝑥 − 𝑥3 = 0. 
So, 𝑥 = 0, 1, −1. 
Thus the critical points are (0, 0), (1, −1) and (−1, −1). 

𝑓𝑦] = [1 − 2𝑥 + 𝑦 −1 + 𝑥 Jacobian: 𝐽(𝑥, 𝑦) = [𝑓𝑥 ]𝑔𝑥 𝑔𝑦 −2𝑥 1 

At (0,0): 𝐽(0, 0) = [1 −1
0 −1] 

This has eigenvalues are ±1, so the critical point is is a linearized saddle. Since saddles are 
structurally stable, we also have a nonlinear saddle. 
In order to sketch, we find the eigenvectors. This is straighforward, eigenvectors for 𝜆 = 

1, −1 are [1
0] and [1

2] respectively. 
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At (1,-1): 𝐽(1, −1) = [−2 0
−2 −1]. 

This has eigenvalues −2, −1, so this is a linearized nodal sink. Since nodal sinks are 
structurally stable, we also have a nonlinear nodal sink. 

At (-1,-1): 𝐽(−1, −1) = [2 −2
2 −1]. 

This has eigenvalues (1 ± 
√

7 𝑖)2, so this is a linearized spiral source. The 2 in the lower 
left entry of the Jacobian tells us the spiral is counterclockwise. Since spiral sources are 
structurally stable, we also have a nonlinear spiral source. 
Now we can sketch the linearized systems near each critical point and tie them together. 

Problem 28.12. Consider the system: 𝑥′ = 𝑥 − 2𝑦 + 3, 𝑦′ = 𝑥 − 𝑦 + 2. 
(a) Find the one critical point and linearize at it. For the linearized system, what is the 
type of the critical point? 

Solution: The equations for the critical points are 

𝑥′ = 𝑥 − 2𝑦 + 3 = 0 

𝑦′ = 𝑥 − 𝑦 + 2 = 0. 

This is a linear system of equations. The only solution is (𝑥, 𝑦) = (−1, 1). 
𝑓𝑦 −2Jacobian: 𝐽(𝑥, 𝑦) = [𝑓𝑥 ] = [1

𝑔𝑥 𝑔𝑦 1 −1] 

−2So, 𝐽(−1, 1) = [1
1 −1]. Thus the linearized system at the critical point is 

[𝑢′ −2
𝑣′] = [1

1 −1] [𝑢
𝑣] . 

This has characteristic equation 𝜆2 + 1 = 0. So the eigenvalues are ±𝑖. This shows the 
linearized system is a center. 
(b) In Part (a) you should have found that the linearized system is a center. Since this is 
not structurally stable, it is not necessarily true that the nonlinear system has a center at 
the critical point. Nonetheless, in this case, it does turn out to be a nonlinear center. Prove 
this. 
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Solution: This is an inhomogeneous linear system with constant input. So one way to 
make a phase portrait is to solve the equation and plot trajectories. 

= [−1Since the input is constant, we guess a constant solution x = K. We find xp 1 ]. (Not 

surprisingly this is the same as the critical point!) 

−2The associated homogeneous system is [𝑥
𝑦′

′
] = [1

1 −1] [𝑥
𝑦] . For the linear, homogeneous 

system, the coefficient matrix has eigenvalues ±𝑖. Thus the critical point at the origin is a 
center. 
The general solution is x = xp + xh. 
Since xp is a constant, the general inhomogeneous solution is just the homogeneous solution 
translated by (−1, 1). This shows that the critical point at (−1, 1) is, indeed, a center. 

Topic 29: Structural stability 

This will be covered in topic 28: nonlinear phase portraits. 

Topic 30 Population models 

Problem 30.13. Let 𝑥(𝑡) be the population of sharks off the coast of Massachusetts and 
𝑦(𝑡) the population of fish. Assume that the populations satisfy the Volterra predator-prey 
equations 

𝑥′ = 𝑎𝑥 − 𝑝𝑥𝑦; 𝑦′ = −𝑏𝑦 + 𝑞𝑥𝑦, where 𝑎, 𝑏, 𝑝, 𝑞, are positive. 

Assume time is in years and 𝑎 and 𝑏 have units 1/years. 
Suppose that, in a few years, warming waters start killing 10% of both the fish and the 
sharks each year. Show that the shark population will actually increase. 
Solution: Original equations: 

sharks: 𝑥′=𝑎𝑥 − 𝑝𝑥𝑦 

fish: 𝑦′= − 𝑏𝑦 + 𝑞𝑥𝑦. 

The original equilibrium is (sharks, fish) = (𝑞
𝑏 , 𝑎𝑝 ). 
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With warming: 

𝑥′ = (𝑎 − 0.1)𝑥 − 𝑝𝑥𝑦 

𝑦′ = −(𝑏 + 0.1)𝑦 + 𝑞𝑥𝑦 

(𝑏+0.1 𝑎−0.1The new equilibrium is (sharks, fish) = 𝑞 , 𝑝 ). So the equilibrium level of sharks 
increases. (And that of fish decreases.) 

Problem 30.14. Consider the system of equations 

𝑥′(𝑡) = 39𝑥 − 3𝑥2 − 3𝑥𝑦; 𝑦′(𝑡) = 28𝑦 − 𝑦2 − 4𝑥𝑦. 

The four critical points of this system are (0,0), (13,0), (0,28), (5,8). 
(a) Show that the linearized system at (0,0) has eigenvalues 39 and 28. What type of critical 
point is (0,0)? 

Solution: The Jacobian of the system is 𝐽(𝑥, 𝑦) = [39 − 6𝑥 − 3𝑦 −3𝑥 
−4𝑦 28 − 2𝑦 − 4𝑥]. 

[39 0(a) 𝐽(0, 0) = This is a diagonal matrix, so the eigenvalues are the diagonal0 28]. 

entries: 𝜆 = 39, 28. Positive real eigenvalues imply the linearized critical point is a nodal 
source. This is structurally stable, so the nonlinear critical point is also a nodal source. 
(b) Linearize the system at (13,0); find the eigenvalues; give the type of the critical point. 

[−39 −39Solution: 𝐽(13, 0) = This is triangular, so the eigenvalues are just the0 −24]. 

diagonal entries: 𝜆 = −39, −24. Negative eigenvalues imply the linearized critical point is 
a nodal sink. This is structurally stable, so the nonlinear critical point is also a nodal sink. 
(c) Repeat Part (b) for the critical point (0,28). 

[ 
−45 0Solution: 𝐽(0, 28) = This is triangular, so the eigenvalues are just the−112 −28]. 

diagonal entries: 𝜆 = −45, −28. Negative eigenvalues imply the linearized critical point is 
a nodal sink. This is structurally stable, so the nonlinear critical point is also a nodal sink. 
(d) Repeat Part (b) for the critical point (5,8). 

[−15 −15Solution: 𝐽(5, 8) = The characteristic equation is 𝜆2 + 23𝜆 − 360 = 0.−32 −8 ]. 

−23 ± 
√

232 + 4 ⋅ 360This has eigenvalues . That is, it has one positive and one negative 2
eigenvalue. Therefore, the linearized critical point is a saddle. This is structurally stable, 
so the nonlinear critical point is also a saddle. 
Note: We could also have identified this as a saddle because its determinant is negative. 
(e) Sketch a phase portrait of the system. If this models two species, what is the relationship 
between the species? What happens in the long-run? 

Solution: Here is the phase portrait. Note the separatix (in orange). It is made up of the 
trajectories that go asymptotically to the saddle point (5,8). 
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The relationship between the species is one of competition –you see that because both 𝑥′ 

and 𝑦′ have a −𝑥𝑦 term. In the long run one species dies out and the other stabilizes at 
the carrying capacity of the environment. 

Problem 30.15. The system for this equation is 

𝑥′ = 4𝑥 − 𝑥2 − 𝑥𝑦 

𝑦′ = −𝑦 + 𝑥𝑦 

(a) This models two populations with a predator-prey relationship. Which variable is the 
predator population? 

Solution: In the presence of 𝑦, the growth rate of 𝑥 decreases. In the presence of 𝑥, the 
growth rate of 𝑦 increases. Thus 𝑥 is the prey population and 𝑦 the predator population. 
(b) What would happen to the predator population in the absence of prey? What about the 
prey population in the absence of predators? 

Solution: Without prey, i.e., when 𝑥 = 0, the DE for 𝑦 is 𝑦′ = −𝑦. This is exponential 
decay. So eventually the predator population would go to 0. 
Without predators, the equation for the prey becomes 𝑥′ = 4𝑥 − 𝑥2. This is the logistic 
equation with dynamically stable critical point 𝑥 = 4 and dynamically unstable critical 
point 𝑥 = 0. The prey population would eventially stabilize at 4. 
(c) There are three critical points. Find and classify them 

Solution: We can factor each of the equations to find the critical points: 

𝑥′ = 𝑥(4 − 𝑥 − 𝑦) = 0 ⇒ 𝑥 = 0 or 4 − 𝑥 − 𝑦 = 0 

𝑦′ = 𝑦(−1 + 𝑥) ⇒ 𝑦 = 0 or 𝑥 = 1. 

The critical points are (0, 0), (4, 0), (1, 3). 

The Jacobian is 𝐽(𝑥, 𝑦) = [4 − 2𝑥 − 𝑦 −𝑥 
𝑦 −1 + 𝑥]. 

Considering each of the critical points in turn: 

𝐽(0, 0) = [4 0 ⇒ 𝜆 = 4, −1.0 −1] 
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One positive and one negative eigenvalue imply this is a linearized saddle. This is struc-
turally stable, so the nonlinear critical point is also a saddle. 

𝐽(4, 0) = [−4
0 

−4
3 ] ⇒ 𝜆 = −4, 3. 

One positive and one negative eigenvalue imply this is a linearized saddle. This is struc-
turally stable, so the nonlinear critical point is also a saddle. 

−1𝐽(1, 3) = [−1 
0 

].3 

Characteristic equation: 𝜆2 + 𝜆 + 3 = 0 ⇒ 𝜆 = −1 ± 
√

11 𝑖. 
Complex eigenvalues with negative real part imply this is a linearized spiral sink. This is 
structurally stable, so the nonlinear critical point is also a spiral sink. 
(d) Sketch a phase portrait of this system. What is the relationship between the species? 
What happens in the long-run? 

Solution: For the saddles, we need to find the eigenvectors. For the spiral, we need its 
direction. 

0𝐽(0, 0) = [4 
−1] has independent eigenvectors [1

0], [0
1].0 

𝐽(4, 0) = [−4
0 

−4
3 

] has independent eigenvectors [1
0], [−4

7 
]. 

The spiral at (1, 3) is counterclockwise because of the 3 in the lower left entry of 𝐽(1, 3). 
Here is the phase portrait. Since we’re talking about populations, the portrait only shows 
the first quadrant. All trajectories spiral into the critical point at (2,3). (Actually, there 
are a handful of trajectories along the axes that go asymptotically to the saddle points.) 

Problem 30.16. The equations for this system are 

𝑥′ = 𝑥2 − 2𝑥 − 𝑥𝑦 

𝑦′ = 𝑦2 − 4𝑦 + 𝑥𝑦 
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(a) If this models two populations, what would happen to each of the populations in the 
absence of the other? 

Solution: If 𝑦(𝑡) = 0, then 𝑥′ = 𝑥2 − 2𝑥. This has critical points 𝑥 = 0, 2 and phase line 

0 2 

So, without any predator (𝑦(𝑡) = 0), the prey population 𝑥 will either crash to 0 or boom 
to infinity –at least according to this model. 
The answer is the same for 𝑦(𝑡) if 𝑥(𝑡) = 0. 
(b) There are four critical points. Find and classify them 

Solution: Again, we can factor to find the critical points. 

𝑥′ = 𝑥(𝑥 − 2 − 𝑦) = 0 ⇒ 𝑥 = 0 or 𝑥 − 2 − 𝑦 = 0 

𝑦′ = 𝑦(𝑦 − 4 + 𝑥) = 0 ⇒ 𝑦 = 0 or 𝑦 − 4 − 𝑥 = 0. 

First let 𝑥 = 0, then 𝑦 = 0 or 𝑦 = 4: two critical points (0,0), (0,4). 
Next let 𝑦 = 0, then 𝑥 = 0 or 𝑥 = 2: one more critical point (2,0). 
Finally, solve 𝑥 − 2 − 𝑦 = 0, 𝑦 − 4 − 𝑥 = 0: one more critical (3,1). 

−𝑥 The Jacobian is 𝐽(𝑥, 𝑦) = [2𝑥 − 2 − 𝑦 
2𝑦 − 4 + 𝑥]. Looking at each critical point in turn 𝑦 

we get 

0𝐽(0, 0) = [−2 
−4] ⇒ 𝜆 = −2, −4. Negative eigenvalues imply this is a linearized nodal 0 

sink. This is structurally stable, so the nonlinear critical point is also a nodal sink. 

𝐽(0, 4) = [−6 0 ⇒ 𝜆 = −6, 4. One positive and one negative eigenvalue imply this 4 4] 

is a linearized saddle. This is structurally stable, so the nonlinear critical point is also a 
saddle. 

𝐽(2, 0) = [2 −2 ⇒ 𝜆 = 2, −2. One positive and one negative eigenvalue imply this 0 −2] 

is a linearized saddle. This is structurally stable, so the nonlinear critical point is also a 
saddle. 

−3𝐽(3, 1) = [3 
1 

].1 

Characteristic equation: 𝜆2 −4𝜆+6 = 0 ⇒ 𝜆 = 2±
√

2 𝑖 Complex eigenvalues with positive 
real part imply this is a linearized spiral source. This is structurally stable, so the nonlinear 
critical point is also a spiral source. 
(c) Sketch a phase portrait of the system. What is the relationship between the species? 
What happens in the long-run? 

Solution: For the saddles, we need to find the eigenvectors. For the spiral, we need its 
direction. 

0𝐽(0, 4) = [−6
4 4] has independent eigenvectors [−5

2 
], [0

1]. 
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−2𝐽(2, 0) = [2 
−2] has independent eigenvectors [1

0], [1
2].0 

The spiral at (1, 3) is counterclockwise because of the 1 in the lower left entry of 𝐽(1, 3). 
Here is the phase portrait. The trajectories either go asymptotically to (0, 0) or to ∞. This 
looks like a predator-prey relationship. What seems more important, is that each population 
by itself is modeled by a doomsday-extinction equation. That is, either the population goes 
to ∞ or to 0. It’s hard to tell exactly, but it seems that when the predator (𝑦) goes to 
infinity, the prey (𝑥) goes extinct. 

2 First-order nonlinear 

Topic 10: Direction fields, integral curves, existence of solutions 

Problem 10.17. Consider 𝑦′ = 𝑥 − 𝑦 + 1. 
(a) Sketch the nullcline. Use it to label the regions of the plane where the slope field has 
positive slope as + and negative slope as −. Use this to give a very rough sketch of some 
solution curves. 
Solution: The nullcline is the isocline with 𝑚 = 0. In our case, this is 0 = 𝑥 − 𝑦 + 1, which 
we also write as 𝑦 = 𝑥 + 1. Above this line, we have 𝑦 > 𝑥 + 1 or 0 > 𝑥 − 𝑦 + 1, which 
means the slope is negative. Below this line, we have 𝑦 < 𝑥 + 1 and 0 < 𝑥 − 𝑦 + 1 so slope 
is positive. 
We draw horizontal lines along the nullcline to indicate the slope. The slope field is negative 
above the line, so integral curves in this region go down towards the nullcline, level off to 
slope 0 at the nullcline and then turn upwards. The slope field is positive below the nullcline, 
so integral curves in this region all slope upwards. 
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(b) Start a new graph. Add the nullcline, some isoclines with direction field elements, and 
sketch some solution curves. 
(Note the isocline 𝑦 = 𝑥 happens to be a solution—don’t expect this to happen usually.) 

Solution: See graph: 

x

y
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m=0

m=1
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(c) Can you make a squeezing argument that shows that all solutions go asymptotically to 
the line 𝑦 = 𝑥. 
Solution: This is a little tricky since we will use an indirect argument. We’ll consider 
integral curves below the integral curve 𝑦 = 𝑥. The argument for those above 𝑦 = 𝑥 is 
similar. 
The isoclines are all parallel to the integral curve 𝑦 = 𝑥. That is, as lines they have slope 
1. The isoclines below the line 𝑦 = 𝑥 all have slope field elements of slope greater than 
1. The slope of an integral curve below 𝑦 = 𝑥 must go asymptotically to 1. (If it stayed 
greater than 1 + 𝑏, for some positive 𝑏, then it would have to keep growing faster than the 
line 𝑦 = 𝑥 and, therefore, cross 𝑦 = 𝑥.) If the slope of an integral curve goes asymptotically 
to 1, the curve must approach the isocline with 𝑚 = 1, i.e. 𝑦 = 𝑥. 
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Problem 10.18. Consider 𝑦′ = 𝑥2 − 𝑦2 

(a) Sketch the nullcline. Use it to label the regions of the plane where the slope field has 
positive slope as + and negative slope as −. Use this to give a very rough sketch of some 
solution curves. 
Note: the nullcline consists of two lines. 
Solution: The nullcline consists of the lines 𝑦 = ±𝑥. Below is a sketch of the nullcline with 
the regions marked + or −. Look at the figure with Part (b) for some integral curves. 
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(b) Start a new graph. Add the nullcline, some isoclines with direction field elements, and 
sketch some solution curves. 
Solution: Isoclines are hyperbolas with asymptotes 𝑦 = ±𝑥. 
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m=8

m=0
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(c) Add some integral curves to the plot in Part (b). Include the one with 𝑦(2) = 0. 
Solution: See plot in Part (b). 
(d) Use squeezing to estimate 𝑦(100) for the solution with IC 𝑦(2) = 0. 
Solution: We can see from the plot in Part (b) that this solution seems to go asymptotically 
to the nullcline 𝑦 = 𝑥. 
The argument to see this is a little subtle. We’ll give the argument as a sequence of 
observations. On an exam, you could just state this as an empirical observation about the 
isoclines sketch. 
1. Clearly the nullcline 𝑦 = 𝑥 is an upper fence for this integral curve, so the curve stays 
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below this line. 
2. To be specific, let’s take 𝑚 = 2. The isocline for 𝑚 = 2 goes asymptotically to the line 
𝑦 = 𝑥. That is, its slope as a curve (not the isocline slope) is close to 1 for large 𝑥. Thus, 
when 𝑥 is large, the isocline 𝑚 = 2 is a lower fence, i.e., its slope element goes from below 
to above the isocline. 
3. Let 𝑥 be large enough that the isocline for 𝑚 = 2 is a lower fence. If the integral curve 
𝑦(𝑥) is below the isocline then its slope is bigger than 2. This means it is growing faster 
than the isocline and must eventually cross it. At this point it is above the fence and in the 
funnel between 𝑦 = 𝑥 and the isocline for 𝑚 = 2. 
4. This funnel goes asymptotically to 𝑦 = 𝑥, so we can estimate 𝑦(100) ≈ 100. 

Problem 10.19. Consider 𝑦′ = 𝑦(1 − 𝑦) (Note that there is no 𝑥; what does this mean 
for the shape of your nullclines? Your isoclines?) 

(a) Sketch the nullcline. Use it to label the regions of the plane where the slope field has 
positive slope as + and negative slope as −. Use this to give a very rough sketch of some 
solution curves. 
Solution: Note. This is secretly introducing autonomous equations. 
The sketch is shown with the solution to Part (b). 
The nullcline is 0 = 𝑦(1 − 𝑦). For this equation to work, we need either 𝑦 = 0 or 𝑦 = 1. 
Therefore, these two lines are our nullclines. Since the tangent elements lie along the lines, 
the nullclines turn out to be solutions. 
We can see that for 𝑦 > 1, 𝑦′ = 𝑦(1 − 𝑦) < 0, i.e. the slope field is negative. Likewise, for 
0 < 𝑦 < 1, 𝑦 > 0, so the slope field is positive. Finally, for 𝑦 < 0, 𝑦′ < 0, so the slope field 
is negative. 
Since the nullclines are solutions, no other solutions cannot cross them. This means each 
solution curve is restricted to one section of the graph. So we have integral curves that come 
down from 𝑦 = ∞ and go asymptotically to the top nullcline. Likewise, we have integral 
curves coming up from 𝑦 = −∞ and going asymptotically to the bottom nullcline. Finally, 
in the middle section, we have integral curves that come asymptotically from the bottom 
nullcline and go asymptotically up to the top one. These have a flat S-shape with positive 
slope. All solutions repeat identically when translated in the horizontal direction. 
See the graph in Part (b). Notice that we could come close to drawing it knowing just the 
nullclines. 
(b) Start a new graph. Add the nullcline, some isoclines with direction field elements, and 
sketch some solution curves. 
We can see that all isoclines are horizontal lines because the equation for 𝑦′ does not depend 
on 𝑥 and so is constant when 𝑦 is fixed and 𝑥 changes. 
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Problem 10.20. Consider 𝑦′ = 𝑦/𝑥 Note: the line 𝑥 = 0 (𝑚 = ∞) also separates regions 
of positive and negative slope. 
(a) Sketch the isoclines for 𝑚 = 0, ±1, ±2. Use it this to give a sketch of some solutions. 
Solution: The isoclines are 𝑦/𝑥 = 𝑚 or 𝑦 = 𝑚𝑥. These are lines that happen to have the 
same slope as the slope field elements along them. This shows that each of these isoclines 
is actually a solution. 

y

x

m = −2

m = 2

m = 0

m = −1

m = 1

(b) This is a rare case where we can solve the DE. Solve the DE and use your solution to 
draw some integral curves. 

𝑑𝑦 𝑑𝑥 Solution: Separating variables: =𝑦 𝑥 
. 

Integrating: ln |𝑦| = ln |𝑥| + 𝐶. 
Solving for 𝑦: 𝑦 = 𝐶𝑥. All solutions are lines through the origin. 
Picture is the same as in Part (a). 
Note: Because there are no solutions that go through points on the 𝑦-axis (other than (0, 0)), 
existence of solutions through every point fails. Also, because there are many solutions 
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that go through the origin, uniqueness fails. This is not surpising since 𝑓(𝑥, 𝑦) = 𝑦/𝑥 is not 
continuous when 𝑥 = 0. 

Problem 10.21. For 𝑦′ = −𝑦/(𝑥2 + 𝑦2), sketch the direction field in the upper half-plane. 
For the solution with initial condition 𝑦(0) = 1 explain why you know it is decreasing for 
𝑥 > 0. Explain why it is always positive for 𝑥 > 0. 
Solution: The isoclines are −𝑦/(𝑥2 + 𝑦2) = 𝑚. A little algebra converts this to the form 

2
𝑥2 + (𝑦 + 

1 = 
1 

2𝑚) 4𝑚2 . 

This is a circle of radius 1/(2𝑚) centered at the point (0, −1/(2𝑚)) on the 𝑦-axis. Note 
that these all go through the origin. This is okay since −𝑦/(𝑥2 + 𝑦2) is not defined at the 
origin, so all bets are off there. 
The isoclines with negative slope (𝑚 < 0) are in the upper-half plane. We know that 
because 𝑦′ = −𝑦/(𝑥2 + 𝑦2) is negative when 𝑦 > 0. 
The solution will always be positive because we know that 𝑦(𝑥) = 0 is a solution (just plug 
it into the DE). Except at the origin, the existence and uniqueness theorem guarantees that 
integral curves don’t cross. This means an integral curve that starts positive can’t cross
𝑦 = 0, so it must stay positive. 
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1Problem 10.22. Consider the DE 𝑦′ = 𝑥 + 𝑦 

Draw a direction field by using about five isoclines; the picture should be square, using the 
intervals between −4 and 4 on both axes. 
Sketch in the integral curves that pass respectively through (0,0), (-1,1), (0,-2). Will these 
curves cross the line 𝑦 = −𝑥 − 1? Explain by using the existence and uniqueness theorem 

1Solution: The isocline for slope 𝑚 is = 𝑚. For 𝑚 ≠ 0 this is equivalent to 𝑥 + 𝑦 =𝑥 + 𝑦 
1/𝑚. These are lines of slope -1. Several are shown in the figure below. The isocline with 
𝑚 = −1 is also an integral curve (its slope field elements are all along the line). Since
𝑓(𝑥, 𝑦) = 1/(𝑥 + 𝑦) is continuous along the line 𝑥 + 𝑦 = −1, the existence and uniqueness 
theorem guarantees that other integral curves can’t cross it. 
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Problem 10.23. Consider the DE 𝑦′ = −𝑥𝑦. 
(a) Draw a direction field using isoclines for 𝑚 = 0, 1, 2, −1, −2. 
Solution: The nullcline consists of both axes. The isoclines are hyperbolas with two 
branches, asymptotic to the axes. 
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(b) Let 𝑦(𝑥) be the solution with initial condition 𝑦(1) = 1.5. Use fences and funnels to 
estimate 𝑦(100). 
Solution: The 𝑥-axis is an integral curve for the solution 𝑦(𝑥) = 0 This acts as a fence. 
The isocline for 𝑚 = −2 is an upper fence when 𝑥 > 1. (This is because the slope elements 
go from above to below the isocline.) Together these two fences form a funnel that goes 
asymptotically to 𝑦 = 0. 
Since the initial point (1, 1.5) is inside the funnel we can estimate 𝑦(100) ≈ 0. The exact 
value will be slightly bigger. 

Topic 11: Numerical methods 

Problem 11.24. For 𝑦′ = 𝑦2 − 𝑥2: 
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(a) Use Euler’s method with ℎ = 0.5 to estimate 𝑦(3) for the solution with initial condition 
𝑦(2) = 0. 
Solution: As in the Topic 11 notes, set up a table with columns: 𝑛, 𝑥𝑛, 𝑦𝑛, 𝑚, 𝑚ℎ. 

𝑛 𝑥𝑛 𝑦𝑛 𝑚 𝑚ℎ 
0 2 0 -4 -2 
1 2.5 -2 -2.25 -1.125 
2 3 -3.125 

(b) Is the estimate in Part (a) too high or too low? 

Solution: We can take the derivative of our equation to get the equation for the second 
derivative 𝑦″ = 2𝑦𝑦′ − 2𝑥. If we look at the point (𝑥, 𝑦) = (2, 0), then we can use our 
original equation to get 𝑦′ = −4, and the second derivative equation to get 𝑦″ = −4 < 0. 
A negative second derivative implies the integral curve is concave down, which implies that 
our estimate is an overestimate, since drawing tangent lines to the curve produces values 
above the curve. 

𝑑𝑦 Problem 11.25. For 𝑑𝑥 
= 𝐹 (𝑥, 𝑦) = 𝑦2 − 𝑥2. 

(a) Use Euler’s method to estimate the value at 𝑥 = 1.5 of the solution for which 𝑦(0) = −1. 
Use step size ℎ = 0.5. As in the notes, make a table with columns 𝑛, 𝑥𝑛, 𝑦𝑛, 𝑚, 𝑚ℎ. 
We are estimating y(1.5) using Euler’s method with step size 0.5. This takes 1.5−0 = 30.5 
steps, as outlined in the following table. 

𝑛 𝑥𝑛 𝑦𝑛 𝑚𝑛 𝑚𝑛ℎ 
0 
1 
2 
3 

0 
0.5 
1.0 
1.5 

-1 
-0.5 
-0.5 

-0.875 

1 
0 

-0.75 

0.5 
0 

-0.375 

Thus Euler’s method gives the estimate 

𝑦(1.5) ≈ 𝑦3 = −0.875. 

The corresponding Euler polygon for this estimation is 

x

y

−0.5

−1.5

−1

0.5 1 1.5

Euler polygon and actual integral curve. 
(b) Is the estimate found in Part (a) likely to be too large or too small? 
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It is likely to be too large. One way to see this is to use the second derivative test to
𝑑2𝑦 check the concavity of solutions around the inital point. First, find = 𝑦″ by taking the 𝑑𝑥2 

derivative of the differential equation: 

𝑑 𝑑 𝑦″ = 𝑑𝑥(𝐹(𝑥, 𝑦)) = 𝑑𝑥(𝑦2 − 𝑥2) = 2𝑦𝑦′ − 2𝑥, 

Second, evaluate the second derivative at the initial point (0, −1) to get 

𝑦″|(0,−1) = 2(−1)(1) − 2(0) = −2 < 0. 

This means the solution that goes through the initial point is concave down. The tangent 
to a concave down function lies above the function in a small neighborhood, so the Euler 
estimate for one step is likely to overshoot. Running the same check for the next two end-
points, shows that the second derivative is negative at each endpoint of the Euler polygon. 
So each of the three steps is likely to overshoot. This suggests the estimate found is likely 
to be greater than the value of the true solution when 𝑥 = 1.5. 

Topic 12: Automonous DEs and bifurcation diagrams 

Problem 12.26. For the following DE, find the critical points, draw the phase line, sketch 
some integral curves, ’explain’ the model. 
Temperature: 𝑥′ = −𝑘(𝑥 − 𝐸) (𝐸 constant ambient temperature). 
Solution: Critical points are when 𝑓(𝑥) = 0, which in this case is just 𝑥 = 𝐸. To draw a 
phase line, we see that 𝑥′ is negative for 𝑥 > 𝐸 and 𝑥′ is positive for 𝑥 > 𝐸. Looking at 
the phaseline, we see that 𝑥 = 𝐸 is a stable critical point. 

x

•x = E

t

x

x = E

If we draw some integral curves, we get curves that head toward the line 𝑥 = 𝐸. The 
intuitive explanation behind this model is that the temperature 𝑥 heads towards the ambient 
temperature. 

Problem 12.27. Suppose the following DE models a population 𝑥′ = −𝑎𝑥+1, which is a 
constant birth-and-death rate situation modified to include a constant rate of replenishment. 
(i) Sketch the bifurcation diagram and list any bifurcation points (these are special values 
of 𝑎). 
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(ii) The bifurcation points divide the 𝑎-axis into intervals. Illustrate one typical case for 
each interval by giving the phase line diagram. For each of these phase lines, give (rough) 
sketches of solutions in the 𝑡𝑥-plane. 
(iii) For what values of 𝑎 is the population sustainable. What happens for other values of 𝑎. 
Note the applet ’phase lines’ can show this system. 
Solution: We answer (i) and (ii) together. The critical points are 𝑥′ = −𝑎𝑥 + 1 = 0. So,
𝑥 = 1/𝑎. We graph this in the 𝑎𝑥-plane –it’s a hyperbola with two branches. Here is the 
finished bifurcation diagram with two phase lines. These are explained below. 
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x = −1unstable
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+

a = −1

x

a
1−1
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Bifurcation diagram for x′ = 1− ax

unstable

stable

After plotting the critical points, we see that the graph divides the 𝑎𝑥-plane into 3 regions. 
In order to determine the sign of 𝑥′ in each region, we found phase lines for 𝑎 = 1 and 𝑎 = −1. 
These are shown at the left. Determining the direction of the arrows was straightforward 
and we leave it to the reader to supply the details. 
We place the phase lines on the bifurcation diagram at 𝑎 = 1 and 𝑎 = −1. (This answers 
(ii).) The arrows on the phase lines then tell us the sign of 𝑥′ in all 3 regions. 
Once we know the sign on 𝑥′ , it’s a simple matter to decide the stability of each part of the 
diagram. The stable branch is drawn in green and labeled ‘stable’. Likewise, the unstable 
branch is drawn in orange and labeled ‘unstable’. 
There is one bifurcation point at 𝑎 = 0. This is a bifurcation point because the bifurcation 
diagram is qualitatively different on either side of 𝑎 = 0. 
(iii) When 𝑎 > 0 there is a positive stable equilibrium, so the population is sustainable. 
When 𝑎 ≤ 0 the population is not sustainable. In fact, it blows up to infinity. 
Finally, we do our duty and sketch some solution curves based on the phase lines. 
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Problem 12.28. Consider the system 𝑥′ = 𝑥(𝑥 − 𝑎) + 
1
4 , which is the ’doomsday-vs-

extinction’ equation with the addition of a constant rate of replenishment. 
(a) First consider the equation 𝑥′ = 𝑥(𝑥 − 𝑎) with 𝑎 > 0. Why is this called the doomsday-
vs-extinction population model? 

Solution: We draw the phase line. The critical points are 𝑥 = 0 and 𝑥 = 𝑎. It is easy to 
determine the sign of 𝑥′ , these are indicated by the arrows on the phase line. 

x

x = aunstable

x = 0stable

+

+

−

We see that there is no positive stable equilibrium. If 𝑥 starts greater than 𝑎, then it will 
increase to infinity –doomsday. If 𝑥 starts less than 𝑎, then it will decrease to 0 –extinction. 
(b) Sketch the bifurcation diagram for 𝑥′ = 𝑥(𝑥 − 𝑎) + 1/4. 
Solution: Here is the bifurcation diagram. It requires a bit of calculus to graph properly 
and figure the values of various points. This is explained below. 

x

a
1−1 2

−2

+

+−

−

stable

stable

Bifurcation diagram for x′ = x(x− a) + 1/4

Here is the explanation for the bifurcation diagram. 
Computing the crititcal points is simple algebra 

𝑥′ = 𝑥(𝑥 − 𝑎) + 
1
4 = 0 ⇒ 𝑎 = 𝑥 + 

1 
4𝑥. 

First notice that this gives 𝑎 as a function of 𝑥. So we’ll first plot it with the axes reversed 
and just for positive 𝑥. When 𝑥 is small 𝑎 is large. When 𝑥 is large 𝑎 ≈ 𝑥. This leads to the 
graph shown below. We can use calculus to find that the minimum is at 𝑥 = 1/2, 𝑎 = 1. 
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𝑑𝑎 (That is, we solve 𝑑𝑥 
= 0.) 

x

a

1

1/2

To get the bifurcation diagram we just interchange the axes. Free of charge, we see that
𝑎 = 1 is the smallest positive value of 𝑎 on the diagram. 
The part of the diagram with 𝑥 < 0 is found similarly. 
We then plotted a number of phase lines to identify the regions where 𝑥′ is positive and 
negative. As usual, these are marked with + or −. Using these, we can identify the stable 
and unstable parts of the bifurcation diagram. 
(c) Identify the bifurcation points. For what values of 𝑎 is the population sustainable? Which 
positive values of 𝑎 guarantee against extinction? Which positive values of 𝑎 guarantee 
against doomsday? 

Solution: The bifurcation points are at 𝑎 = ±1. 
There are positive stable equilibrium for 𝑎 > 1, so this is the range of 𝑎 where the population 
is sustainable. 
For 𝑎 > 1, the population either stabilizes at the positive stable equilibrium or blows up to 
infinity. So, for 𝑎 > 1, 𝑥 won’t go extinct. 
For 𝑎 = 1, 𝑥 will not linger at the semistable equilibrium, instead it is likely to blow up. 
For 0 < 𝑎 < 1, the population always blows up to infinity. So, for these 𝑎, 𝑥 won’t go 
extinct. 
Thus, the population is guaranteed not to go extinct for all 𝑎 > 0. 
No value of 𝑎 > 0 guarantees against doomsday (𝑥 blowing up). 

Problem 12.29. For the following DE, find the critical points, draw the phase line, sketch 
some integral curves, ’explain’ the model. 
Logistic population growth: 𝑥′ = 𝑘𝑥(𝑀 − 𝑥), where 𝑘 > 0 

Solution: Critical points are when 𝑓(𝑥) = 0, which in this case is 𝑥 = 𝑀 and 𝑥 = 0. To 
draw a phase line, we see that 

⎧negative for 𝑥 > 𝑀 {
𝑥′ = 𝑘𝑥(𝑀 − 𝑥) is positive for 0 < 𝑥 < 𝑀 ⎨{⎩negative for 𝑥 < 0 
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x

•x = M

•x = 0

x

t

x = M

The phase line shows that 𝑥 = 𝑀 is a stable critical point, and 𝑥 = 0 is an unstable critical 
point. 
For the integral curves, we see that above 𝑥 = 𝑀 the integral curve has negative slope and 
goes asymptotically to 𝑥 = 𝑀 , between 𝑥 = 0 and 𝑥 = 𝑀 the curve forms a sort of an 
s-shape, and for 𝑥 < 0 the curve again has negative slope and curves away from 𝑥 = 0. 
The explanation behind this model is that 𝑀 is the carrying capacity of the environment: 
as the population 𝑥 increases towards 𝑀 , the growth rate slows, and for populations above 
𝑥 = 𝑀 , animals die off until 𝑥 = 𝑀 asymptotically. Populations below zero do not make 
intuitive sense and we disregard them. 

Problem 12.30. Consider the doomsday-extinction model: 𝑥′ = 𝛽𝑥2 − 𝛿𝑥 = 𝑘𝑥(𝑥 − 𝑀), 
where 𝛽, 𝛿 > 0. Draw the phase line and sketch some integral curves. 
Solution: Critical points: 𝑥′ = 𝑘𝑥(𝑥 − 𝑀) = 0 ⇒ 𝑥 = 0, 𝑀 . 

⎧positive for 𝑥 > 𝑀 {
𝑥′ = 𝑘𝑥(𝑥 − 𝑀) is negative for 0 < 𝑥 < 𝑀 ⎨{positive for 𝑥 < 0 ⎩ 

This gives the following phase line and solution curves. 
x

•x = M

•x = 0

x

t

x = M

This means 𝑥 = 𝑀 is an unstable critical point, and 𝑥 = 0 is a stable critical point. If we 
draw some integral curves, we see that above 𝑥 = 𝑀 the line has positive slope and away 
from 𝑥 = 𝑀 , between 𝑥 = 0 and 𝑥 = 𝑀 the line forms a sort of a backwards s-shape with 
negative slope, and for 𝑥 < 0 the line again has positive slope and curves towards 𝑥 = 0. 
The explanation for why this model is of this form is that we assume births are proportional 
to 𝑥2, i.e., the probability that two randomly roaming members encounter each other and 
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reproduce and we assume that deathrate is constant. We can see that in our solutions, if 
we start with 0 < 𝑥 < 𝑀 , eventually everything dies, since the birthrate is not enough to 
overcome the death rate. If we start with 𝑥 > 𝑀 , then the population soars to infinity 
because the births are proportional to 𝑥2, which is very large for large 𝑥 and the constant 
death rate cannot keep it in check. We disregard the case 𝑥 < 0 because negative numbers 
of animals don’t make sense. 

3 Extra (not on Quiz 7) 

Topic 31 is not on Quiz 7. These problems may help you in reviewing systems 
of DEs 

Topic 31 Applications to physics: mechanical systems 

Problem 31.31. Nonlinear Spring 
The following DE models a nonlinear spring: 

⎧hard if 𝑐 < 0 (cubic term adds to linear force) {𝑚𝑥̈ = −𝑘𝑥 + 𝑐𝑥3 
⎨{soft if 𝑐 > 0 (cubic term opposes linear force).⎩ 

(a) Convert this to a companion system of first-order equations. 
Solution: The companion system is 

𝑥̇ = 𝑦 

𝑦 ̇ = −𝑘𝑥/𝑚 + 𝑐𝑥3/𝑚 

(b) Sketch a phase portrait of the system for both the hard and soft springs. You can use 
the fact that the linearized centers are also nonlinear centers. (This follows from energy 
considerations.) 

Solution: Case 1. Hard spring (𝑐 < 0): One critical point at (0, 0) 

0 1The Jacobian 𝐽(𝑥, 𝑦) = [−𝑘/𝑚 + 3𝑐𝑥2/𝑚 0] 

𝐽(0, 0) = [ 
0 1

0] ⇒ 𝜆 = 𝑖√𝑘/𝑚. So we have a linearized center. The problem−𝑘/𝑚
statement tells us that this is also a nonlinear center. 

Case 2. Soft spring (𝑐 > 0): We have the following critical points: (0, 0), (±√𝑘/𝑐, 0). 
(0, 0): 𝐽(0, 0) is the same as for the hard spring. This is a linearized center. The problem 
statement says it is also a nonlinear center. 

(±√𝑘/𝑐, 0): 𝐽(±√𝑘/𝑐, 0) = [ 
0 

0
1] (same for both). Thus we have linearized saddles 2𝑘/𝑚 

and, by structural stability, nonlinear saddles. (You should find the eigenvectors to aid in 
sketching the phase portrait.) 
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1

2

2

3 3

Soft spring: 𝑐 > 0 Hard spring: 𝑐 < 0 

(c) (Challenge! For anyone who is interested. This is not part of the ES.1803 syllabus.) 
Find equations for the trajectories of the system. 
Solution: We use a standard trick to get trajectories: 

𝑑𝑦 𝑦 ̇ −𝑘𝑥 + 𝑐𝑥3 

.𝑑𝑥 
= 𝑥̇ = 𝑚𝑦 

This is separable: 𝑚𝑦 𝑑𝑦 = (−𝑘𝑥 + 𝑐𝑥3) 𝑑𝑦. Integrating we get 

𝑚𝑦2 
+ 

𝑘𝑥 
2 

2 
− 

𝑐𝑥4 
= 𝐸⏟ .⏟2 4⏟⏟⏟⏟⏟ total energy = constant 

kinetic energy potential energy 

If 𝑐 < 0 (hard spring), then both energy terms on the right are positive, so 𝑥 and 𝑦 must be 
bounded. Then, for fixed 𝑥, there are at most two points on the trajectory. Thus we must 
have closed trajectories. 
If 𝑐 > 0 (soft spring), then, we can define 𝑤1 and 𝑤2 by 

𝑘𝑥 
2

2 

− 
𝑐𝑥4 

𝑤2(𝑦) = 𝐸 − 
𝑚𝑦2

𝑤1(𝑥) = 4 
, 2 

Using 𝑘 > 0, 𝑚 > 0, we have the graphs of 𝑤1, 𝑤2 given below. Using the same graphical 
ideas as in the proof in the Topic 30 notes that the Volterra predator-prey equation has 
closed trajectories, this shows the phase plane for the soft spring is as shown above. 

x, y

w1, w2

w1 = kx2/2− βx4/4

w2 = E −my2/2

x, y

w1, w2

w1 = kx2/2− βx4/4

w2 = E −my2/1

x, y

w1, w2

w1 = kx2/2− βx4/4

w2 = E −my2/2

Plots of 𝑤1 = 𝑘𝑥
2

2 − 𝑐𝑥
4

4 , 𝑤2 = 𝐸 − 𝑦2 
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Different energy levels correspond to different types of trajectories. At the unstable equi-
librium we compute 𝐸 = 𝑘

4𝑐
2 . We have the following correspondence between energy level 

and trajector (using the labels on the soft-spring phase portrait above): 
𝐸 = 0: Stable equilibrium. 

0 < 𝐸 < 
𝑘2 

Trajectories 1. 4𝑐 
: 

𝑘2
𝐸 = Unstable equilibrium, or a trajectory going asymptotically to or from the unstable 4𝑐 

: 
equilibrium. 
𝑘
4𝑐

2 

< 𝐸: Trajectories 2. 

𝐸 < 
𝑘
4𝑐

2 

(including 𝐸 < 0): Trajectories 3 

Problem 31.32. The damped nonlinear spring has equation 

𝑚𝑥̈ = −𝑘𝑥 + 𝑐𝑥3 − 𝑏𝑥.̇ 

(a) Convert it to a system of first-order equations. 
(b) Sketch a phase portrait for both the hard and soft springs. 
Solution: (a) The system is 

𝑥̇ = 𝑦 

𝑦 ̇ = −𝑘𝑥/𝑚 + 𝑐𝑥3/𝑚 − 𝑏𝑦/𝑚 

(b) Hard spring (𝑐 < 0): One critical point at (0, 0) 

0 1 −𝑏 ± 
√

𝑏2 − 4𝑘𝑚 𝐽(0, 0) = [−𝑘/𝑚 −𝑏/𝑚] ⇒ 𝜆 = . So we have 3 possiblities: 2𝑚 

(i) underdamped = linearized spiral sink; 
(ii) overdamped = linearized nodal sink; 
(iii) critically damped = defective sink. 
In all cases we have a nonlinear sink. In case (iii), because it’s not structurally stable, we 
would need to do more work to see what type of nonlinear sink we have. 
Soft spring (𝑐 > 0): We have the following critical points: (0, 0), (±√𝑘/𝑐, 0). 
(0, 0): linearized sink (spiral, nodal or defective), so we have a nonlinear sink. 
(±√𝑘/𝑐, 0): linearized saddles, so we have nonlinear saddles. 
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