Differential Equations Review Sheet 2, Spring 2024

I. Complex Numbers

- (a) Euler formula: $e^{i\theta} = \cos(\theta) + i\sin(\theta)$.
- (b) Polar form: $a + ib = re^{i\theta}$, $r = \sqrt{a^2 + b^2}$, $\tan \theta = b/a$. (Remember how to draw the polar triangle!)
- (c) n^{th} roots of $re^{i\theta}$: $z = r^{\frac{1}{n}}e^{\frac{i\theta}{n} + \frac{i2\pi k}{n}}$, $k = 0, 1, 2, \dots, n-1$.
- (d) Complexification: e.g., to solve $P(D)x = F_0 cos(\omega t)$ solve $P(D)z = F_0 e^{i\omega t}$ and then decomplexify: $x = \operatorname{Re}(z)$, or $\int e^{-x} \sin(\omega x) dx = \operatorname{Im}(\int e^{(-1+i\omega)x} dx)$.

II. Linear Constant Coefficient Homogeneous DEs

- (a) Linear, Constant Coefficient
 - 1. What does it look like? Well, it's linear, and has constant coefficients. We write it as P(D)x = 0, where P(r) is a polynomial.
 - 2. How do I solve it? Get the characteristic polynomial: replace y by 1, y' by r, y'' by r^2 etc. (This comes from guessing $y = e^{rt}$ as a trial solution.)
 - 3. Solve for the roots of the equation containing r (= characteristic equation).
 - 4. Take roots, r_1 , r_2 etc. and arrange as: $y = c_1 e^{r_1 t} + c_2 e^{r_2 t} + \dots$
 - 5. If roots are complex in the form of $a \pm bi$, and you want a real-valued solution, then make them: $y = c_1 e^{at} \cos(bt) + c_2 e^{at} \sin(bt) + \dots$
 - 6. If r is a double root, then e^{rt} and te^{rt} are both homogeneous solutions.
- (b) Damping (2nd-order only: for my'' + by' + ky = 0, m, b, k > 0)
 - 1. Underdamping when $b^2 4mk < 0$, so roots are complex, solutions oscillate.
 - 2. Overdamping when $b^2 4mk > 0$, so roots are real, solutions are exponentials.
 - 3. Critical damping when $b^2 4mk = 0$, so roots are repeated, solution is $y = c_1 e^{-bt/2m} + c_2 t e^{-bt/2m}$.
- (c) Stability
 - 1. y(t) = 0 is the equilibrium solution.
 - 2. Physics: the system is stable (really asymptotically stable) if the output to the unforced system always goes to the equilibrium as $t \to \infty$.
 - 3. Math: the system is stable if all charactericstic roots have negative real part.
 - 4. Equivalently: the system is stable if all homogeneous solutions to the DE go to 0 as $t \to \infty$.
 - 5. For my'' + by' + ky = 0 the system is stable exactly when m, b and k all have the same sign (usually positive).

III. Linear Constant Coefficient Inhomogenous DEs

- (a) Preliminaries
 - 1. I'm assuming you can solve the homogenous part, P(D)y = 0, already.
 - 2. Inhomogenous CC linear DEs are of the form P(D)y = f, with a function $f(t) \neq 0$.
 - 3. The general solution to P(D)y = f is $y = y_p + y_h$.
 - $(y_p = \text{particular solution}, y_h = \text{general homogeneous solution}.)$
- (b) Exponential response formula (ERF)
 - 1. For solving $P(D)x = Be^{at}$.

- 2. Usual version: $x(t) = \frac{Be^{at}}{P(a)}$, if $P(a) \neq 0$. Note: a is allowed to be complex.
- 3. Extended version: if P(a) = 0, then the solution is $x(t) = \frac{Bte^{at}}{P'(a)}$, if $P'(a) \neq 0$.
- 4. How do you prove the ERF?

• Try the solution ce^{at} . After substitution you find this works with c = B/P(a). (c) Sinusoidal response formula (SRF)

- 1. For solving $P(D)x = B\cos\omega t$.
- 2. Usual version: $x(t) = \frac{B\cos(\omega t \phi(\omega))}{|p(i\omega)|}$, if $P(i\omega) \neq 0$.

Here $\phi(\omega) = \operatorname{Arg}(P(i\omega))$. When writing $\phi(\omega)$ using \tan^{-1} , don't forget to give the quadrants where $P(i\omega)$ might lie.

- 3. How do you prove the SRF?
- Complexify $P(D)x = B\cos(\omega t)$ to $P(D)z = Be^{i\omega t}$. Then use the ERF. 4. Extended version: if $P(i\omega) = 0$, then $x(t) = \frac{Bt\cos(wt \phi(w))}{|P'(i\omega)|}$, where $\phi(\omega) = \frac{P(i\omega)}{|P'(i\omega)|}$ $\operatorname{Arg}(P'(i\omega)).$
- (d) Undetermined coefficients
 - 1. For solving P(D)x = a polynomial.
 - 2. Usual version: guess a solution x(t) = a polynomial of the same degree. Then substitute and solve for the coefficients.
 - 3. **Example.** Solve x'' + 8x' + 7x = 2t. Solution: Try x = At + B. Substitution gives 7At + (8A + 7B) = 2tNow equate coefficients: 7A = 2, 8A + 7B = 0. (So, A = 2/7, B = -16/49.)
 - 4. Extended version: If the DE doesn't go all the way to x, then multiply the guess by the right power of t
 - 5. **Example.** Solve $x^{(4)} + 8x''' = 2t$. **Solution:** This only goes to x''', so multiply the guess by t^3 That is, guess $x = At^4 + Bt^3$.

IV. Linear Operators in General

- 1. An operator T is linear if $T(c_1f + c_2g) = c_1Tf + c_2Tg$ for all functions f, g and constants c_1, c_2 .
- 2. Our main examples of linear operators are D, P(D).
- 3. Our main example of a non-linear operator is the squaring operator, $Tf = f^2$.
- 4. Linearity is almost always easy to check for.

V. Physical Models

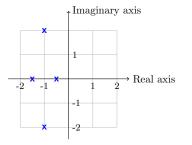
- 1. Exponential growth and decay: DE is y' + ky = f(t).
- 2. Spring-mass-dashpot: DE is my'' + by' + ky = F(t), where m = mass, b = damping, k = spring constant, F = external (driving) force.
- 3. LRC circuit: DE is $LI'' + RI' + \frac{1}{C}I = E'$, where L = inductance, R = resistance, C = capacitance, E = input voltage.
- 4. Mixing tanks

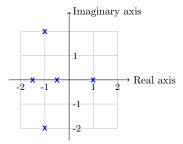
Remember work with amounts not concentrations.

Rate of change = rate in - rate out.

VI. Pole diagrams

- 1. For our systems P(D)x = f, the pole diagram is drawn in the complex plane.
 - The pole diagram tells us a lot about the homogeneous system.
 - We call the charactistic roots poles.
 - You put an \times at each pole.
 - By counting the poles you can determine the order of the system.
 - If all the poles are in the left half-plane, then the system is stable because all the exponents in the homogeneous solutions have negative real part.
 - If there are complex poles, then the system is oscillatory.
 - For a stable system the exponential rate that the unforced (homogeneous) system returns to equilibrium is determined by the real part of the right-most pole.
- 2. Examples





4 poles, stable, oscillatory

5 poles, unstable, oscillatory

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.