Differential Equations Review Sheet 3, Spring 2024

I. Amplitude, Phase Lag, Resonance

1. Consider the system

$$my'' + by' + ky = kF_0\cos(\omega t),$$

where we have declared $F_0 \cos(\omega t)$ to be the input.

- The characteristic polynomial is $P(r) = mr^2 + br + k$.
- The input (angular) frequency is ω .
- The periodic solution (response) is $y_p(t) = g(\omega)F_0\cos(\omega t \phi(\omega))$.
- The natural frequency of the system is $\omega_0 = \sqrt{k/m}$. This is the frequency of oscillation of the undamped unforced spring: mx'' + kx = 0.
- $A = g(\omega)F_0$ is called the amplitude, where $g(\omega) = k/|P(i\omega)|$. The function $g(\omega)$ is called the gain or amplitude response of the system. It depends on ω (and m, b and k).
- $\phi(\omega)$ also depends on ω . The function $\phi(\omega)$ is called the phase lag or the phase response of the system.
- Practical resonance occurs if $g(\omega)$ has a maximum value at ω_r (for $\omega_r > 0$). If there is no such maximum, then the system does not have practical resonance.
- Pure resonance occurs when the denominator in $g(\omega)$ is zero. We then say ω is a pure resonant frequency and the gain is infinite. For our second order system, this only happens when b = 0. In this case, the natural frequency ω_0 is a pure resonant frequency.
- In the second order case with b = 0, the response when $w = \omega_0$ is $y_p(t) = \frac{t \sin \omega_0 t}{2m\omega_0}$.

This is not a sinusoid, rather it is a 'growing' oscillation.

2. Remember the gain depends on what we consider the input. For example, consider the DE: $my'' + by' + ky = bF_0 \cos(\omega t)'$, but still consider $F_0 \cos(\omega t)$ to be the input. Then the gain is $g(\omega) = \frac{b\omega}{|P(i\omega)|}$. There are many variations on this.

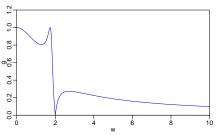
3. The same language applies to higher order systems. For example, consider the system

$$x''' + x'' + 3x' + 4x = y'' + 4y,$$

where we consider y to be the input. If we let $y = B\cos(wt)$, then we find the gain is

$$g(w) = \frac{|4 - \omega^2|}{|P(iw)|} = \frac{|4 - \omega^2|}{\sqrt{(4 - \omega^2)^2 + (3\omega - \omega^3)^2}}.$$

Here's a plot of the gain. There are no pure resonant frequencies. We see practical resonant frequencies just before and after $\omega = 2$.



End of review sheet 3

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.