Differential Equations Review Sheet 4, Spring 2024

I. Basic Linear algebra

- 1. Linearity
 - For matrices and vectors: $A(c_1\mathbf{v_1} + c_2\mathbf{v_2}) = c_1A\mathbf{v_1} + c_2A\mathbf{v_2}$.
 - For DEs: $P(D)(c_1x_1 + c_2x_2) = c_1P(D)x_1 + c_2P(D)x_2$.
 - The general solution to $A\mathbf{x} = \mathbf{b}$ is $\mathbf{x} = \mathbf{x}_{\mathbf{p}} + \mathbf{x}_{\mathbf{h}}$.
- 2. Vector spaces
 - Closed under addition and scalar multiplication.
 - Examples are \mathbf{R}^2 , \mathbf{R}^n , spaces of functions, the set of solutions to homegeneous linear equations.
 - Subspace: any subset that is also a vector space.
 - Basis of a vector space: a set of independent vectors that span the space.
 - Dimension of a vector space: the size of any basis.
- 3. Vectors $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$
 - span of $\mathbf{v_1}, \dots, \mathbf{v_n}$ = set of all linear combinations.
 - Independence: vectors are independent if there are no linear relations between the vectors, i.e., no nontrivial linear combination is zero.
 - Testing for independence
 - For two vectors: check that they aren't multiples of each other
 - For n vectors: put them in the columns of a matrix and check that the matrix has rank n.
- 4. Matrix multiplication
 - Linear combination of columns

Example:
$$\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + x_3 \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}.$$

- Rows times columns (what you learned in 18.02)
- Block matrices: As long as the blocks are compatibly sized

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} E \\ F \end{bmatrix} = \begin{bmatrix} AE + BF \\ CE + DF \end{bmatrix}$$

- 5. Row reduction
 - Why do we use it?

It helps us solve systems, find null spaces, find inverses, test if vectors are independent.

- Echelon form
 - It has pivots. There are 0's below the pivots.
- Reduced row echelon form (RREF)
 - The pivots are all 1.
 - It has 0's above and below the pivots.
 - The all 0 rows are at the bottom.
- Pivot variables and free variables
 - Pivot variables go with pivot columns.
 - Free variables go with the other columns.
- Rank: the number of pivots
- Null Space: all the solutions to $A\mathbf{x} = \mathbf{0}$.
 - -A and its RREF have the *same* null space

- Dimension of Null(A) = number of free variables of A
- Finding a basis
 - For each free variable: set it to 1 and the other free variables to 0.
 - Then solve for the pivot variables.
 - This is easy using the RREF.
- Column space: the span of the columns
 - All **b** such that $A\mathbf{x} = \mathbf{b}$ can be solved
 - Basis: the pivot columns of A (you use the RREF to know which columns are pivot columns)
 - Dimension = rank of the matrix = number of pivot variables
- Solving $A\mathbf{x} = \mathbf{b}$: Augment A with **b** and use row reduction to simplify the system of equations.
- 6. Inverse, transpose, determinant
 - Multiplication

$$- (AB)^{-1} = B^{-1}A^{-1}$$

 $-(AB)^T = B^T A^T$

$$-\det(AB) = \det(A)\det(B)$$

 $- \det(AB) = \det(A) \det(B)$ • Use of A^{-1} in solving $A\mathbf{x} = \mathbf{b}$.

I. Eigenvalues and eigenvectors

- 1. Eigenvalues and eigenvectors
 - Definition: $A\mathbf{v} = \lambda \mathbf{v}$ (for some nonzero vector \mathbf{v}).
 - Computing:

First find λ using the characteristic equation: $|A - \lambda I| = 0$.

Then find the corresponding **v** by finding a basis of $\text{Null}(A - \lambda I)$.

For 2×2 matrices you can find **v** by inspection. For bigger matrices you need to use row reduction to find the null space of $A - \lambda I$.

- Eigenspaces are null spaces:
 - The eigenspace for eigenvalue λ is Null $(A \lambda I)$.
 - If Null(A) is nontrivial, then 0 is an eigenvalue and Null(A) is the corresponding eigenspace.
- Diagonalization: $A = S\Lambda S^{-1}$
- Powers

$$-A^n = S\Lambda^n S^-$$

 $-e^{At} = Se^{\Lambda t}S^{-1}$ (Not done this year.)

II. Systems of DEs

1. What are they?

Systems with more than one dependent variable.

- 2. How do I solve a system of DEs?
 - Eigenvalue method
 - When do I use it?

For constant coefficient systems of the form $\mathbf{x}' = A\mathbf{x}$.

- General solution: For the system $\mathbf{x}' = A\mathbf{x}$, assume λ_1, λ_2 , ... are the eigenvalues of A with corresponding basic eigenvector $\mathbf{v_1}, \mathbf{v_2}, \dots$ Then, the solution is

$$\mathbf{x}(t) = c_1 e^{\lambda_1 t} \mathbf{v_1} + c_2 e^{\lambda_2 t} \mathbf{v_2} + \dots$$

- Modal solutions (normal modes): $\mathbf{x_1}(t) = e^{\lambda_1 t} \mathbf{v_1}, \ \mathbf{x_2}(t) = e^{\lambda_2 t} \mathbf{v_2}$ etc.
- What if I get complex eigenvalues?
- Just like when you got complex roots of your characteristic polynomial, pick one root $\lambda_1 = a + bi$, find its eigenvector and let $\mathbf{z}(t) = e^{\lambda_1 t} \mathbf{v}_1$. Take the real and imaginary parts of $\mathbf{z}(t)$ to get a pair of independent solutions.
- General solution using the matrix exponential: $\mathbf{x} = e^{At}\mathbf{x}(\mathbf{0})$ (Not done this year.)
- Decoupling: This is a change of variables using $A = S\Lambda S^{-1}$
 - Change variables: $\mathbf{x} = S\mathbf{u}$
 - New system: $\mathbf{u}' = \Lambda \mathbf{u}$.
- 3. The companion system (anti-elimination)
 - What is it?
 - The companion system to a higher order DE is an equivalent system of first-order equations.
 - How do I do find the companion system?
 - Start with a higher order DE and introduce new variables to produce a system.
 - Example: x''-8x'+7x=0. Let $x_1=x$ and $x_2=x' \Rightarrow x'_2-8x_2+7x_1=0 \Rightarrow$ system is $x'_1=x_2$, and $x'_2=-7x_1+8x_2$.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.