Differential Equations Review Sheet 6, Spring 2024

Also see the review sheet for quiz 5 for more Fourier review.

I. Solving Ordinary DEs with Fourier Series

- A. Using Fourier Series to solve inhomogeneous ODEs
 - For P(D)x = f(t), where f(t) is periodic:
 - 1. Express f(t) as a Fourier series.
 - 2. Break the DE into individual terms.
 - 3. For each piece: solve using the sinusoidal response formula or compexification.
 - 4. Sum the pieces to get the periodic solution, $x_{sp}(t)$.
 - 5. For undamped second-order, handle cases with pure resonance separately. (That is, cases where $P(i\omega) = 0$.)
 - 6. Often one term dominates the periodic response. That is, often one term is at or near a resonant frequency and the others have a much smaller response.

II. Solving PDEs with Fourier Series

- A. Using Fourier Series to solve PDEs
 - 1. Heat equation example on [0, L]:
 - PDE: $u_t = a u_{xx}$
 - BC: u(0,t) = 0, u(L,t) = 0. (Ice bath boundary conditions)
 - IC: u(x,0) = f(x). (Initial conditions)
 - To solve this example using separation of variables:
 - 1. Find all separated solutions of the form u(x,t) = X(x)T(t) satisfying the PDE.
 - 2. PDE: Substitution gives $X'' + \lambda X = 0$ and $T' + \lambda T = 0$ with the same λ .
 - 3. Break into cases $\lambda > 0$, $\lambda = 0$, $\lambda < 0$. There will be lots of separated solutions to the PDE.
 - 4. Find the modal solutions (separated solutions that also satisfy the BC). This requires some algebra.
 - 5. In general, the case $\lambda > 0$ has modal solutions for some set of λ which we can list and index. The case $\lambda = 0$ sometimes has modal solutions. The case $\lambda < 0$ never has modal solutions.
 - 6. For ice bath BC, there are modal solutions when $\sqrt{\lambda} = \frac{n\pi}{L}$. There are no modal solutions in the cases $\lambda = 0$ and $\lambda < 0$. Thus, we can list all the modal solutions

$$u_n(x,t) = b_n \sin\left(\frac{n\pi x}{L}\right) e^{-an^2\pi^2 t/L^2}$$
 for $n = 1, 2, 3, ...$

7. Superposition of the modal solutions gives the Fourier series e.g.,

$$u(x,t) = \sum_{n=1}^{\infty} u_n(x,t) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right) e^{-an^2\pi^2 t/L^2}$$

8. Use ICs to get the Fourier coefficients b_n .

• For example if $u(x,0) = \sum_{n=1}^{\infty} b_n \sin(n\pi x/L) = f(x)$, then b_n are the Fourier sine coefficients of f(x):

$$b_n = \frac{2}{L} \int_0^L f(x) \sin(\frac{n\pi x}{L}) dx$$

- 2. Wave equation example on [0, L]

 - PDE: y_{tt} = a²y_{xx} (a is the wave speed)
 BC: y(0,t) = 0, y(L,t) = 0. (Boundary conditions for clamped ends)
 - IC: $y(x,0) = f(x), y_t(x,0) = g(x)$. (Initial conditions)
 - Solve this using Fourier's separation of variables method. It is similar to the heat equation example.
- 3. There are many other type of PDEs and BCs that can be solved using separation of variables. For example,
 - BC: $u_x(0,t) = 0$, $u_x(L,t) = 0$ (insulated boundary conditions).
 - PDE: $y_{tt} + by_t = a^2 y_{xx}$ (damped wave equation).
 - etc.
 - The method works as above. You will need to be careful with the boundary conditions.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.