18.03: Substitution methods Jeremy Orloff

1 Introduction

These notes are left over from a time when substitution methods was on the syllabus. They give a brief explanation and some examples of several methods for solving first-order DEs.

2 Various methods

2.1 Straight substitution

To solve a DE of the form $\frac{dy}{dx} = F(ax + by + c)$, make the following substitution.

v = ax + by + c (Remember y is a function of x.)

This implies: $\frac{dv}{dx} = a + b\frac{dy}{dx} = a + bF(v)$. This is a separable DE.

Example 1. Solve $\frac{dy}{dx} = (x+9y+7)^2$. **Solution:** Let $v = x + 9y + 7 \Rightarrow \frac{dv}{dx} = 1 + 9\frac{dy}{dx} = 1 + 9v^2$. Separating variables: $\int \frac{dv}{1+9v^2} = \int dx$. Integrating: $\frac{1}{3}\tan^{-1} 3v = x + C \Rightarrow v = \frac{1}{3}\tan(3x+C)$. Back substitute: $x + 9y + 7 = \frac{1}{3}\tan(3x+C) \Rightarrow y = \frac{1}{9}\left(\frac{1}{3}\tan(3x+C) - x - 7\right)$ Note: y is only defined on an interval, e.g., if C = 0 then it's only defined for $-\pi/2 < 3x < \pi/2$.

Example 2. Solve $\frac{dy}{dx} = (x + y + 1)^5$. **Solution:** Let $v = x + y + 1 \implies \frac{dv}{dx} = 1 + v^5$. Separate variables: $\int \frac{dv}{1 + v^5} = \int dx$. This is painful, but doable as an integral.

2.2 Homogeneous equations

Homogeneous equations have the form y' = f(y/x).

Note: This is a different use of the word homogeneous than in our constant coefficient, homogeneous, linear differential equations.

Substitution: w = y/x. This implies: y = xw, so $y' = w + xw' = f(w) \implies w' = f(w)/x - w/x$. This is a separable equation!

Example 3. Show $y' = \frac{x^3 + 3xy^2 + y^3}{x^2y + xy^2}$ is homogeneous.

Solution: Note, both numerator and denominator are made up of terms of degree 3. Divide top and bottom by x^3 : $y' = \frac{1+3(y/x)^2 + (y/x)^3}{y/x + (y/x)^2}$, which has the form, y' = f(y/x).

Example 4. Solve $y' = \frac{xy}{x^2 - y^2}$ (prime means derivative with respect to x).

Solution: Divide top and bottom by x^2 : $y' = \frac{y/x}{1 - (y/x)^2}$. Let w = y/x. So, $wx = y \implies w'x + w = y'$. Thus,

$$w'x + w = \frac{w}{1 - w^2} \implies x\frac{dw}{dx} = \frac{w}{1 - w^2} - w = \frac{w^3}{1 - w^2}.$$

This is separable.

Separate variables: $\int \frac{1-w^2}{w^3} dw = \int \frac{1}{x} dx.$ Do the integration: $-\frac{1}{2w^2} - \ln w = \ln x + C.$ We have an implicit solution. We won't true to solve

We have an implicit solution. We won't try to solve for w as an explicit function of x.

Example 5. Solve $y' = \frac{x^{3/2}y + y^{1/2}x^2}{x^{5/2}}$.

Solution: We rewrite the right-hand side to get: $y' = y/x + (y/x)^{1/2}$. The substition w = y/x leads to the DE: $\frac{dw}{dx} = \frac{w^{1/2}}{x}$. Then, separation of variables gives

$$\int \frac{dw}{w^{1/2}} = \int \frac{dx}{x} \quad \Rightarrow \ 2w^{1/2} = \ln x + C \quad \Rightarrow \ w = \left(\frac{1}{2}\ln x + C\right)^2.$$

(Note: in the last equation, we changed the meaning of C.)

Back substition: $y = x \left(\frac{1}{2}\ln x + C\right)^2$.

2.3 Bernoulli Equations

Bernoulli equations have the form: $\frac{dy}{dx} + p(x)y = q(x)y^n$. This almost looks like a linear DE. We can convert it to a linear first-order DE as follows. Algebra: $y^{-n}y' + py^{1-n} = q$. Substitute: $w = y^{1-n} \Rightarrow w' = (1-n)y^{-n}y'$. So,

$$\frac{1}{1-n}w' + pw = q \qquad \text{Linear DE}.$$

Note: This works as long as $n \neq 1$. But, in that case the DE is already linear.

Example 6. Solve $x^2y' + xy + y^2 = 0$. **Solution:** Put in standard form: $y' + \frac{1}{x}y = -\frac{1}{x^2}y^2$. This implies: $y^{-2}y' + \frac{1}{x}y^{-1} = -\frac{1}{x^2}$. Substitution: Let $w = y^{-1} \Rightarrow w' = -y^{-2}y' \Rightarrow -w' + \frac{1}{x}w = -\frac{1}{x^2} \Rightarrow w' - \frac{1}{x}w = \frac{1}{x^2}$. This is a linear, first-order DE, which we can solve using the variation of parameters formula.

Homogeneous solution: $w_h(x) = e^{-\int -\frac{1}{x} dx} = e^{\ln x} = x.$

Variation of parameters: $w = x \left(\int \frac{1}{x^3} + C_1 \right) = x \left(-\frac{1}{2x^2} + C_1 \right) = \frac{-1 + Cx^2}{2x}$. Back substitute: $y = \frac{1}{w} = \frac{2x}{Cx^2 - 1}$ Note: This equation also happens to be homogeneous.

2.4 Double Substitution

Example 7. Solve $\frac{dy}{dx} = \frac{x+y}{3+x+2y}$. **Solution:** Double substitution: Let u = x+y, v = 3+x+2yConsider u to be the independent variable, i.e., v = v(u)A little algebra shows

$$x = 2u - v + 3, y = -u + v - 3 \implies \frac{dx}{du} = 2 - \frac{dv}{du}, \quad \frac{dy}{du} = -1 + \frac{dv}{du}.$$

Now,

$$\frac{dy}{dx} = \frac{dy/du}{dx/du} = \frac{2 - dv/du}{-1 + dv/du} = \frac{u}{v}$$

This leads to the homogeneous DE: $\frac{dv}{du} = \frac{2u+v}{u+v}$.

2.5 'Flipping'

Sometime just turning the equation over makes things easier.

Example 8. Solve $\frac{dx}{dt} = \frac{1}{x^3 - tx^2}$. Solution: Take the reciprocal of both sides:

$$\frac{dt}{dx} = x^3 - x^2 t.$$

If we consider t to be the dependent and x the independent variable, we have a first-order linear equation. We won't go through the integrals to solve this.

MIT OpenCourseWare https://ocw.mit.edu

ES.1803 Differential Equations Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.