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1 Introduction 

Symmetric matices are very important in math, science and engineering. Our ultimate goal 
is to prove the following theorem. 
Spectral Theorem. A real 𝑛 × 𝑛 symmetric matrix has 𝑛 orthogonal eigenvectors with 
real eigenvalues. 
The generalization of this theorem to infinite dimensions is widely used in math and science. 
In fact, the Fourier series that we study in ES.1803 can be seen as an application of this 
theory. 

2 Symmetric Matrices 

We can understand symmetric matrices better if we discuss them in terms of their properties, 
instead of their coordinates. To avoid being too abstract, we will rely on coordinates for 
the following two definitions. 
Definition 1. For column vectors v, w the inner product is defined in terms of transpose 
and matrix multiplication: ⟨v, w⟩ = v𝑇 w. 
(In 18.02 you called this the dot product.) 

Definition 2. The matrix 𝐴 is symmetric if 𝐴𝑇 = 𝐴. 

Property 1. Suppose 𝐴 in an 𝑚 × 𝑛 matrix and 𝐵 is 𝑛 × 𝑝. Then, (𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇 . 
Proof. Let 𝐴𝑖,𝑗 be the 𝑖, 𝑗 entry of 𝐴. Writing out matrix multiplication in terms of indices: 

𝑛 𝑛 

((𝐴𝐵)𝑇 )𝑖,𝑗 
= (𝐴𝐵)𝑗,𝑖 = ∑ 𝐴𝑗,𝑘𝐵𝑘,𝑖 = ∑(𝐵𝑇 )𝑖,𝑘(𝐴𝑇 )𝑘,𝑗 = (𝐵𝑇 𝐴𝑇 )𝑖,𝑗. ■ 

𝑘=1 𝑘=1 

2.1 Properties of symmetric matrices 

Property 2. If 𝐴 is symmetric, then ⟨𝐴v, w⟩ = ⟨v, 𝐴w⟩. 
Proof: We use the definition of inner product: 

⟨𝐴v, w⟩ = (𝐴v)𝑇 w = v𝑇 𝐴𝑇 w = v𝑇 𝐴w = ⟨v, 𝐴w⟩. 

(The second to last equality follows because 𝐴 = 𝐴𝑇 .) 

Everything we do below will follow from this Property 2. 

Property 3. If 𝐴 is symmetric and v, w are eigenvectors with different eigenvalues, then 
⟨v, w⟩ = 0, i.e., v and w are orthogonal. 
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3 SPECTRAL THEOREM 2 

Proof: Suppose 𝐴v = 𝜆1v and 𝐴w = 𝜆2w. Then using Property 2, we see 

𝜆1⟨v, w⟩ = ⟨𝜆1v, w⟩ = ⟨𝐴v, w⟩ = ⟨v, 𝐴w⟩ = ⟨v, 𝜆2w⟩ = 𝜆2⟨v, w⟩. 

Look at the first and last terms of this chain and use 𝜆1 ≠ 𝜆2 to conclude ⟨v, w⟩ = 0. ■ 

Property 4. If 𝐴 is real and symmetric, then 𝐴 has a real eigenvalues. 
Proof. We’ll give both an algebraic and analytic proof of this key property. 
Algebraic proof: If we had defined the term, I could just wave the word Hermitian. As 
it is, I will do the same thing without using the word. For non-zero complex vectors, note 
two things: 
1. ⟨v, v⟩ = ∑ v𝑘v𝑘 > 0. 
2. Since 𝐴 is real, 𝐴v = 𝐴v. 
If v is an eigenvector with eigenvalue 𝜆, then 

𝜆⟨v, v⟩ = ⟨𝜆v, v⟩ = ⟨𝐴v, v⟩ = ⟨v, 𝐴v⟩ = ⟨v, 𝐴v⟩ = ⟨v, 𝜆v⟩ = 𝜆⟨v, v⟩. 

Looking at the first and last terms in this chain, we see 𝜆 = 𝜆. This proves 𝜆 is real. ■ 

Analytic proof: This proof is a litlle more involved than the algebaic one, but it produces 
an eigenvector and some geometric insight. 
Let 𝑆 be the unit sphere, i.e., the set of all vectors of length 1. 
We can use Lagrange multipliers, with the objective function 𝑓(v) and constraint 𝑔(v) = 
⟨v v⟩ = 1, to find the maximum of 𝑓 on 𝑆. 
The symmetry of 𝐴 implies grad𝑓 = 2𝐴v and grad𝑔 = 2v. So the Lagrange multiplier 
equations are 

2𝐴v = 2𝜆v, 𝑔(v) = ⟨v, v⟩ = 1. 
The first equation shows that constrained critical points occur when v is an eigenvector. 
Therefore, the point v1 on 𝑆 where 𝑓 has a maximum must be an eigenvector. ■ 

3 Spectral Theorem 

Spectral Theorem. Suppose the 𝑛 × 𝑛 matrix 𝐴 is symmetric. Then it has 𝑛 orthogonal 
(hence independent) eigenvectors with real eigenvalues. 
Proof: Property 4 provides one eigenvector, v1 with eigenvector 𝜆1. 
Let 𝑊 be the set of all vectors orthogonal to v1. First we show that if w ∈ 𝑊 then 𝐴w ∈ 𝑊. 
To do this we must show ⟨v1, 𝐴w⟩ = 0 for all w ∈ 𝑊 ∶ 

⟨v1, 𝐴w⟩ = ⟨𝐴v1, w⟩ = 𝜆1⟨v1, w⟩ = 0. 

But now the same argument as in Property 4 (replacing R𝑛 with 𝑊 ) shows that 𝐴 has a 
real eigenvector v2 ∈ 𝑊 . We can continue this until the eigenvectors form a basis of R𝑛. 
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