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1 Introduction to differential equations 

1.1 Goals 

1. Know the definition of a differential equation. 

2. Know our first and second most important equations and their solutions. 

3. Be able to derive the differential equation modeling a physical or geometric situation. 

4. Be able to solve a separable differential equation, including finding lost solutions. 

5. Be able to solve an initial value problem (IVP) by solving the differential equation 
and using the initial condition to find the constant of integration. 

1.2 Differential equations and solutions 

A differential equation (DE) is an equation with derivatives! 
Example 1.1. (DEs modeling physical processes, i.e., rate equations)

𝑑𝑇 1. Newton’s law of cooling: = −𝑘(𝑇 − 𝐴), where 𝑇 is the temperature of a body in an𝑑𝑡 
environment with ambient temperature 𝐴. 

2. Gravity near the earth’s surface: 𝑚𝑑2𝑥 = −𝑚𝑔, where 𝑥 is the height of a mass 𝑚 𝑑𝑡2 

above the surface of the earth. 

3. Hooke’s law: 𝑚𝑑2𝑥 = −𝑘𝑥, where 𝑥 is the displacement from equilibrium of a spring𝑑𝑡2 

with spring constant 𝑘. 

Other examples: Below we will give some examples of differential equations modeling 
some geometric situations. 
A solution to a differential equation is any function that satisfies the DE. Let’s focus on 
what this means by contrasting it with solving an algebraic equation. 
The unknown in an algebraic equation, such as 

𝑦2 + 2𝑦 + 1 = 0 

is the number 𝑦. The equation is solved by finding a numerical value for 𝑦 that satisfies the 
equation. You can check by substitution that 𝑦 = −1 is a solution to the equation shown. 
The unknown in the differential equation 

𝑑2𝑦 
𝑑𝑥2 

+ 2 
𝑑𝑦 
𝑑𝑥 

+ 𝑦 = 0 
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is the function 𝑦(𝑥).The equation is solved by finding a function 𝑦(𝑥) that satisfies the 
equation One solution to the equation shown is 𝑦(𝑥) = 𝑒−𝑥. You can check this by substi-
tuting 𝑦(𝑥) = 𝑒−𝑥 into the equation. Again, note that the solution is a function. 
More often we will say that the solution is a family of functions, e.g., 𝑦 = 𝐶𝑒−𝑡. The 
parameter 𝐶 is like the constant of integration in 18.01. Every value of 𝐶 gives a different 
function which solves the DE. 

1.3 The most important differential equation in 18.03 

Here, in the very first class, we state and give solutions to our most important differential 
equations. In this case we will check the solutions by substitution. As we proceed in the 
course we will learn methods that help us discover solutions to equations. 
The most important DE we will study is 

𝑑𝑦 = 𝑎𝑦, (1)𝑑𝑡 
where 𝑎 is a constant (in units of 1/time). In words the equation says that 

the rate of change of 𝑦 is proportional to 𝑦. 

Because of its importance we will write down some other ways you might see it: 

𝑑𝑦 𝑦′ = 𝑎𝑦; = 𝑎𝑦(𝑡); ̇𝑦′ − 𝑎𝑦 = 0; 𝑦 − 𝑎𝑦 = 0.𝑑𝑡 
In the last equation, we used the physicist ‘dot’ notation to indicate the derivative is with 
respect to time. You should recognize that all of these are the same equation. 
The solution to this equation is 

𝑦(𝑡) = 𝐶𝑒𝑎𝑡, 
where 𝐶 is any constant. 

1.3.1 Checking the solution by substitution 

The above solution is easily checked by substitution. Because this equation is so important 
we show the details. Substituting 𝑦(𝑡) = 𝐶𝑒𝑎𝑡 into Equation 1 we have: 

Left side of 1: 𝑦′ = 𝑎𝐶𝑒𝑎𝑡 

Right side of 1: 𝑎𝑦 = 𝑎𝐶𝑒𝑎𝑡 

Since after substitution the left side equals the right, we have shown that 𝑦(𝑡) = 𝐶𝑒𝑎𝑡 is 
indeed a solution of Equation 1. 
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1.3.2 The physical model of the most important DE 

As a physical model this equation says that the quantity 𝑦 changes at a rate proportional 
to 𝑦. 
Because of the form the solution takes we say that Equation 1 models exponential growth 
or decay.’ 
In this course we will learn many techniques for solving differential equations. We will test 
almost all of them on Equation 1. After learning these techniques, you should, of course, 
understand how to use them to solve 1. However: whenever you see this equation you 
should remind yourself that it models exponential growth or decay and you should know 
the solution without computation. 

1.4 The second most important differential equation 

Our second most important DE is 

𝑚𝑦″ + 𝑘𝑦 = 0, (2) 

where 𝑚 and 𝑘 are constants. You can easily check that, with 𝜔 = √𝑘/𝑚, the function 

𝑦(𝑡) = 𝐶1 cos(𝜔𝑡) + 𝐶2 sin(𝜔𝑡) 

is a solution. Equation 2 models a simple harmonic oscillator. More prosaically, it models 
a mass 𝑚 oscillating at the end of a spring with spring constant 𝑘. 

1.5 Solving differential equations by the method of optimism 

In our first and second most important equations above we simply told you the solution. 
Once you have a possible solution it is easy to check it by substitution into the differential 
equation. We will call this method, where you guess a solution and check it by plugging 
your guess into the equation, the method of optimism. In all seriousness, this will be an 
important method for us. Of course, its utility depends on learning how to make good 
guesses! 

1.6 General form of a differential equation 

We can always rearrange a differential equation so that the right hand side is 0. For 
example, 𝑦′ = 𝑎𝑦 can be written as 𝑦′ − 𝑎𝑦 = 0. With this in mind the most general form 
for a differential equation is 

𝐹(𝑡, 𝑦, 𝑦′, … , 𝑦(𝑛)) = 0, 
where 𝐹 is a function. For example, 

(𝑦′)2 + 𝑒𝑦″ sin(𝑡) − 𝑦(4) = 0. 

The order of a differential equation is the order of the highest derivative that occurs. So 
the example just above shows a DE of order 4. 
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1.7 Constructing a differential equation to model a physical situation 

We use rate equations, i.e., differential equations, to model systems that undergo change. 
The following argument using Δ𝑡 should be somewhat familiar from calculus. 
Example 1.2. Suppose a population 𝑃 (𝑡) has constant birth and death rates: 

𝛽 = 2%/year, 𝛿 = 1%/year 

Build a differential equation that models this situation. 
Solution: In the interval [𝑡, 𝑡 + Δ𝑡], the change in 𝑃 is given by 

Δ𝑃 = number of births - number of deaths. 

Over a small time interval Δ𝑡 the population is roughly constant so: 

Births in the time interval ≈ 𝑃(𝑡) ⋅ 𝛽 ⋅ Δ𝑡 
Deaths in the time interval ≈ 𝑃(𝑡) ⋅ 𝛿 ⋅ Δ𝑡 

Combining these we have: Δ𝑃 ≈ 𝑃 (𝑡) 𝛽 Δ𝑡 − 𝑃 (𝑡) 𝛿 Δ𝑡. So, 

Δ𝑃 
Δ𝑡 ≈ (𝛽 − 𝛿)𝑃 (𝑡). 

Finally, letting Δ𝑡 go to 0 we have derived the differential equation 

𝑑𝑃 = (𝛽 − 𝛿)𝑃 . 𝑑𝑡 
Notice that if 𝛽 > 𝛿 then the population is increasing. 
Of course, this DE is our most important DE 1: the equation of exponential growth or 

= 𝑃0𝑒(𝛽−𝛿)𝑡 decay. We know the solution is 𝑃 . 
Note: Suppose 𝛽 and 𝛿 are more complicated and depend on 𝑡, say 𝛽 = 𝑃 +2𝑡 and 𝛿 = 𝑃/𝑡. 
The derivation of the DE is the same, i.e. 

𝑑𝑃 = (𝛽(𝑡) − 𝛿(𝑡))𝑃 = (𝑃 + 2𝑡 − 𝑃 /𝑡)𝑃 . 𝑑𝑡 
Because 𝛽 and 𝛿 are no longer constants, this is not a situation of exponential growth and 
the solution will be more complicated (and probably harder to find). 

Example 1.3. Bacteria growth. Suppose a population of bacteria is modeled by the 
exponential growth equation 𝑃 ′ = 𝑘𝑃 . Suppose that the population doubles every 3 hours. 
Find the growth constant 𝑘. 
Solution: The equation 𝑃 ′ = 𝑘𝑃 has solution 𝑃(𝑡) = 𝐶𝑒𝑘𝑡. From the initial condition we 
have that 𝑃(0) = 𝐶. Since the population doubles every 3 hours we have 𝑃(3) = 𝐶𝑒3𝑘 = 2𝐶. 

Solving for 𝑘 we get 𝑘 = 3
1 ln 2 (in units of 1/hours.) 
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1.8 Initial value problems 

An initial value problem (IVP) is just a differential equation where one value of the solution 
function is specified. We illustrate with some simple examples. 
Example 1.4. Initial value problem. Solve the IVP 𝑦 ̇ = 3𝑦, 𝑦(0) = 7. 
Solution: We recognize this as an exponential growth equation, so 𝑦(𝑡) = 𝐶𝑒3𝑡. Using the 

initial condition we have 𝑦(0) = 7 = 𝐶. Therefore, 𝑦(𝑡) = 7𝑒3𝑡. 
Example 1.5. Initial value problem. Solve the IVP 𝑦′ = 𝑥2, 𝑦(2) = 7. 
Solution: Note, the use of 𝑥 indicates that the independent variable in this problem is 𝑥. 
This is really an 18.01 problem: integrating we get 𝑦 = 𝑥3/3+𝐶. Using the initial condition 
we find 𝐶 = 7 − 8/3. 

1.9 Separable Equations 

Now it’s time to learn our first technique for solving differential equations. A first-order DE 
is called separable if the variables can be separated from each other. We illustrate with a 
series of examples. 
Example 1.6. Exponential growth. Use separation of variables to solve the exponential 
growth equation 𝑦′ = 4𝑦. 

𝑑𝑦 Solution: We rewrite the equation as = 4𝑦. Next we separate the variables by getting 𝑑𝑡 
all the 𝑦’s on one side and the 𝑡’s on the other. 

𝑑𝑦 = 4 𝑑𝑡. 𝑦 

Now we integrate both sides: 

∫ 
𝑑𝑦 = ∫ 4 𝑑𝑡 ⇔ ln |𝑦| = 4𝑡 + 𝐶. 𝑦 

Now we solve for 𝑦 by exponentiating both sides: 

|𝑦| = 𝑒𝐶𝑒4𝑡 𝑜𝑟 𝑦 = ±𝑒𝐶𝑒4𝑡. 

Since ±𝑒𝐶 is just a constant we rename it simply 𝐾. We now have the solution we knew 
we’d get: 

𝑦 = 𝐾𝑒4𝑡. 

Example 1.7. Here is a standard example where the solution goes to infinity in a finite 
time (i.e., the solutions ’blow up’). One of the fun features of differential equations is how 
very simple equations can have very surprising behavior. 
Solve the initial value problem 

𝑑𝑦 = 𝑦2; 𝑦(0) = 1.𝑑𝑡 
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Solution: We can separate the variables by moving all the 𝑦’s to one side and the 𝑡’s to 
the other 𝑑𝑦 = 𝑑𝑡 𝑦2 

Integrating both sides we get: −1
𝑦 

= 𝑡 + 𝐶 

Think: The constant of integration is important, but we only need it on one side. 
Solving for 𝑦 we get the solution: 

1𝑦 = −𝑡 + 𝐶 
. 

Finally, we use initial condition 𝑦(0) = 1 to find that 𝐶 = −1. So the solution is: 
1𝑦(𝑡) = 1 − 𝑡 . 

We graph this function below. Note that the graph has a vertical asymptote at 𝑡 = 1. 

t

y

−2 −1 1 2 3 4

y = 1
1−t

Graph of the function 1/(1 − 𝑡) 

1.9.1 Technical definition of a solution 

Looking at the previous example we see the domain of 𝑦 consists of two intervals: (−∞, 1) 
and (1, ∞). For technical reasons we will require that the domain of a solution consists of 
exactly one interval. So the above graph really shows two solutions: 

Solution 1: 𝑦(𝑡) = 1/(1 − 𝑡), where 𝑦 is in the interval (−∞, 1) 
Solution 2: 𝑦(𝑡) = 1/(1 − 𝑡), where 𝑦 is in the interval (1, ∞) 

In the example problem, since our IVP had 𝑦(0) = 1 the solution must have 𝑡 = 0 in its 
domain. Therefore, solution 1 is the solution to the example’s IVP. 

1.9.2 Lost solutions 

We have to cover one more detail of separable equations. Sometimes solutions get lost and 
have to be recovered. This is a small detail, but you want to pay attention since it’s worth 
1 easy point on exams and psets. 

1Example 1.8. In the example 𝑦′ = 𝑦2, we found the solution 𝑦 = − But it is easy 𝑡 + 𝐶 
. 
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to check by substitution that 𝑦(𝑡) = 0 is also a solution. Since this solution can not be 
written as 𝑦 = −1/(𝑡 + 𝐶) we call it a lost solution. 
The simple explanation is that it got lost when we divided by 𝑦2. After all if 𝑦 = 0 it was 
not legitimate to divide by 𝑦2. 
General idea of lost solutions for separable DEs 

Suppose we have the differential equation 

𝑦′ = 𝑓(𝑥)𝑔(𝑦) 

If 𝑔(𝑦0) = 0 then you can check by substitution that 𝑦(𝑥) = 𝑦0 is a solution to the DE. It 
may get lost in when we separate variables because dividing by by 𝑔(𝑦) would then mean 
dividing by 0. 
Example 1.9. Find all the (possible) lost solutions of 𝑦′ = 𝑥(𝑦 − 2)(𝑦 − 3). 
Solution: In this case 𝑔(𝑦) = (𝑦 − 2)(𝑦 − 3). The lost solutions are found by finding all the 
roots of 𝑔(𝑦). That is, the lost solutions are 𝑦(𝑥) = 2 and 𝑦(𝑥) = 3. 

1.9.3 Implicit solutions 

Sometimes solving for 𝑦 as a function of 𝑥 is too hard, so we don’t! 
= 𝑥3+3𝑥+1Example 1.10. Implicit solutions. Solve 𝑦′ 

𝑦6+𝑦+1 . 
Solution: This is separable and after separating variables and integrating we have 

𝑦
7
7 

+ 
𝑦2 𝑥

4
4 

+ 
3𝑥2 

2 
+ 𝑦 = 2 

+ 𝑥 + 𝐶. 

This is too hard to solve for 𝑦 as a function of 𝑥 so we leave our answer in this implicit 
form. 

1.9.4 More examples 

𝑑𝑦 Example 1.11. Solve 𝑑𝑥 
= 𝑥𝑦. 

Solution: Separating variables: 𝑑𝑦 = 𝑥 𝑑𝑥. Therefore, ∫ 
𝑑𝑦 = ∫ 𝑥 𝑑𝑥, which implies𝑦 𝑦 

ln 𝑦 = 
𝑥
2
2 

+ 𝐶. Finally after exponentiation and replacing 𝑒𝐶 by 𝐾 we have 𝑦 = 𝐾𝑒𝑥2/2. 
Think: There is a lost solution that was found by some sloppy algebra. Can you spot the 
solution and the sloppy algebra?

𝑑𝑦 Example 1.12. Solve .𝑑𝑥 
= 𝑥3𝑦2 

Solution: Separating variables and integrating gives: −1 = 𝑥
4
4 + 𝐶. Solving for 𝑦 we have 𝑦 

4𝑦 = −𝑥4 + 4𝐶 
. 

There is also a lost solution: 𝑦(𝑥) = 0. 
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Example 1.13. Solve 𝑦′ + 𝑝(𝑥)𝑦 = 0. 
𝑑𝑦 Solution: We first rewrite this so that it’s clearly separable: = −𝑝(𝑥) 𝑑𝑥. After the 𝑦 

usual separation and integration we have 

log(|𝑦|) = − ∫ 𝑝(𝑥) 𝑑𝑥 + 𝐶 

Therefore, |𝑦(𝑥)| = 𝑒𝐶𝑒− ∫ 𝑝(𝑥) 𝑑𝑥 and 𝑦(𝑥) = 0 is a lost solution. 

1.10 Geometric Applications of DEs 

Since the slope of a curve is given by its derivatives, we can often use differential equations 
to describe curves. 
Example 1.14. An heavy object is dragged through the sand by rope. Suppose the object 
starts at (0, 𝑎) with the puller at the origin, so the rope has length 𝑎. The puller moves 
along the 𝑥-axis so that the rope is always taut and tangent to the curve followed by the 
object. This curve is called a tractrix. Find an equation for it.

𝑑𝑦 Solution: Since the rope is tangent to the curve, its slope is 𝑑𝑥 . Also, computing the slope 

𝑑𝑦 𝑦 geometrically as rise/run, the diagram below shows that 𝑑𝑥 
= −√𝑎2 − 𝑦2 

. 

x

y

(x, y)

y a

√
a2 − y2

a

The tractrix 

Thus, −√𝑎2

𝑦
− 𝑦2 

𝑑𝑦 = 𝑑𝑥. Integrating (details below) we get 

𝑎 ln (𝑎 + √𝑎2 − 𝑦2 
) − √𝑎2 − 𝑦2 = 𝑥 + 𝐶. 𝑦 

𝑥 = 𝑎 ln (𝑎 + √𝑎2 − 𝑦2 
The initial position (𝑥, 𝑦) = (0, 𝑎) implies 𝐶 = 0. Therefore, ) − √𝑎2 − 𝑦2.𝑦 

To finish the problem, we show that the integral is what we claimed it was: 

Let 𝐼 = − ∫ 
√𝑎2 − 𝑦2 

𝑑𝑦. 𝑦 
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Now use the trig. substitution: 𝑦 = 𝑎 sin 𝑢: 

⇒ 𝐼 = − ∫ 
𝑎 cos 𝑢 

sin 𝑢 
𝑑𝑢 𝑎 sin 𝑢 

𝑎 cos 𝑢 𝑑𝑢 = −𝑎 ∫ 
cos2 𝑢 

= −𝑎 ∫ 
1 − sin2 𝑢 𝑑𝑢 = −𝑎 ∫ csc 𝑢 − sin 𝑢 𝑑𝑢 sin 𝑢 

= 𝑎 ln(csc 𝑢 + cot 𝑢) − 𝑎 cos 𝑢 

Back substituting we get 𝐼 = −√𝑎2 − 𝑦2+𝑎 ln (𝑎 + √
𝑦
𝑎2 − 𝑦2 

), which is what we claimed 

above. 

Example 1.15. Suppose 𝑦 = 𝑦(𝑥) is a curve in the first quadrant and that the part of the 
curve’s tangent line that lies in the first quadrant is bisected by the point of tangency. Find 
and solve the DE for this curve. 
Solution: The figure shows the piece of the tangent bisected by the point (𝑥, 𝑦) on the

𝑑𝑦 −𝑦 curve. Thus the slope of the tangent = = . This differential equation is separable 𝑑𝑥 𝑥 
and is easily solved: 𝑦 = 𝐶/𝑥. 

x

y

(x, y)

y

2y

x x

1.11 Orthogonal trajectories 

This is mostly taken from the 18.03 Supplementary Notes by Arthur Mattuck. 
Given a one-parameter family of plane curves, its orthogonal trajectories are another one-
parameter family of curves, each one of which is perpendicular to all the curves in the 
original family. 
Example 1.16. Take the family consisting of all circles having center at the origin, i.e., 
the one-parameter family of curves 𝑥2 + 𝑦2 = 𝑐2. We know that all the rays from the origin 
are orthogonal to all the circles. That is the orthogonal trajectories to the circles are all 
the rays (half-lines) starting at the origin. 
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x

y

Blue rays are orthogonal to orange circles wherever they meet. 
The examples below will show how to find orthogonal trajectories using differential equa-
tions. 
Orthogonal trajectories arise in different contexts in applications. For example, if the origi-
nal family represents the lines of force in a gravitational or electrostatic field, its orthogonal 
trajectories represent the equipotentials, the curves along which the gravitational or elec-
trostatic potential is constant. 
To find the orthogonal trajectories for a one-parameter family: 
1. Find the ODE 𝑦′ = 𝑓(𝑥, 𝑦) satisfied by the family.

12. The orthogonal family has DE 𝑦′ = −𝑓((𝑥, 𝑦) . That is, the solutions of this DE are the 

orthogonal trajectories to the original family. 
This works because at any point (𝑥, 𝑦), the original curve has slope 𝑓(𝑥, 𝑦), so the orthogonal 
curve must have slope −1/𝑓(𝑥, 𝑦) (negative reciprocal). 
Example 1.17. Find the orthogonal trajectories to the family of curves 𝑦 = 𝑐 𝑥𝑛, where 𝑛 
is a fixed positive integer and 𝑐 an arbitrary constant. 
Solution: First note: If 𝑛 = 1, the curves are lines through the origin, so the orthogonal 
trajectories should be the circles centered at the origin – this will help check our work. 
Step 1 is to find the first-order DE of the family of curves. The parameter 𝑐 cannot be in 
this DE – it is the parameter in the solutions. 
One common trick is to isolate the 𝑐 and then differentiate with respect to 𝑥. Remember 
when differentiating that 𝑦 is a function of 𝑥. 

isolate 𝑐 derivative
𝑦 = 𝑐 𝑥𝑛 −−−−−−−−→ 𝑦𝑥−𝑛 = 𝑐 −−−−−−−−→ 𝑦′𝑥−𝑛 − 𝑛𝑦𝑥−𝑛−1 = 0. 

𝑦′ = 𝑛𝑦 Now, solving for 𝑦′ gives 𝑥 . This is the DE for our family of curves. 
The DE for the orthogonal trajectories is then 

𝑦′ = − 
𝑥 
𝑛𝑦 

. 

This is separable. After separating the variables and integrating, we have 

𝑥2 + 𝑛𝑦2 = 𝑑. 

We use 𝑑 as the constant of integration because 𝑐 was already used. This solution represents 
a family of ellipses, i.e., for each 𝑑 we have the equation of an ellipse. 
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x

y

𝑛 = 2: Orthogonal families 𝑦 = 𝑐𝑥2, 𝑥2 + 2𝑦2 = 𝑑. 
Note: When 𝑛 = 1, the ellipses are circles centered at the origin, as predicted. 

1.12 Definite integral solutions to IVPs 

Often we can write the solution to an initial value problem using definite integrals. While 
this will not play a major role in 18.03, it can be quite useful when the integrals are hard 
to compute or need to be computed numerically. We illustrate with an example. 
Example 1.18. Solve 𝑦′ = sin(𝑥2) cos(𝑦2), 𝑦(0) = 2. Give the solution implicitly using 
definite integrals. 

Solution: Seperating variables we have cos 
𝑑𝑦 
(𝑦2) 

= sin(𝑥2) 𝑑𝑥. We can write the solution as 

𝑦 𝑥 

∫ cos 
1
(𝑢2) 

𝑑𝑢 = ∫ sin(𝑣2) 𝑑𝑣. 
2 0 

Notes. 
1. We used dummy variables in the integrals because 𝑥, 𝑦 are in the limits. 
2. The 𝑦 integral starts at 𝑦 = 2, i.e., the initial 𝑦 value and the 𝑥 integral starts at 𝑥 = 0, 
i.e., at the initial 𝑥 value. 
3. Differentiating both integrals with respect to 𝑥, using the fundamental theorem of cal-
culus and the chain rule, we get 

1 𝑑𝑦 
cos(𝑦2) 𝑑𝑥 

= sin(𝑥2). 

This is equivalent to the original differential equation. 
4. The solution is given implicitly, i.e., a function of 𝑦 = a function of 𝑥. 
5. Setting 𝑥 = 0 and 𝑦 = 2, the integrals on both sides are 0. That is, the implicit solution 
satisfies the initial condition. 
6. These integrals cannot be computed in terms of our usual elementary functions, but they 
are easily computed numerically. 



MIT OpenCourseWare 

https://ocw.mit.edu 

ES.1803 Differential Equations 
Spring 2024 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	1 Introduction to differential equations
	1.1 Goals
	1.2 Differential equations and solutions
	1.3 The most important differential equation in 18.03
	1.3.1 Checking the solution by substitution
	1.3.2 The physical model of the most important DE

	1.4 The second most important differential equation
	1.5 Solving differential equations by the method of optimism
	1.6 General form of a differential equation
	1.7 Constructing a differential equation to model a physical situation
	1.8 Initial value problems
	1.9 Separable Equations
	1.9.1 Technical definition of a solution
	1.9.2 Lost solutions
	1.9.3 Implicit solutions
	1.9.4 More examples

	1.10 Geometric Applications of DEs
	1.11 Orthogonal trajectories
	1.12 Definite integral solutions to IVPs




