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11 Numerical methods for first-order differential equations 

11.1 Goals 

1. Be able to compute approximate solutions by hand using Euler’s method. 

2. Be able to compute the concavity of a solution and say whether Euler’s method gives 
an over or under-estimate, 

3. Know some of the ways numerical methods can fail or give misleading results 

4. Know the broad outline of how other numerical methods work and understand that 
many of them are really fancier versions of Euler’s method. 

11.2 Introduction 

In this topic we will look at numerical methods for approximating solutions to differential 
equations. Just like numerical integration, this allows us to approximate the solution to any 
first-order DE. It is especially valuable for those equations that we can’t solve analytically. 
Using the computer we can then study as many solutions as we want for a given DE. 

11.3 Generalities about numerical methods 

The basic framework is that we are given a first-order DE with initial condition 

𝑦′ = 𝑓(𝑥, 𝑦); 𝑦(𝑥0) = 𝑦0 

The goal is to estimate y(x) for other values of 𝑥. 
The estimate is done by approximating 𝑦(𝑥) at a discrete set of points using a series of 
steps: 

Start at (𝑥0, 𝑦0), step to (𝑥1, 𝑦1), step to (𝑥2, 𝑦2), step to (𝑥3, 𝑦3) … 

Different numerical methods have different ways of computing each step. But they all have 
the following picture in common. 

x

y

(xn, yn) hn

mnhn

(xn+1, yn+1)

slope mn

The triangle shows the step from (𝑥𝑛, 𝑦𝑛) to (𝑥𝑛+1, 𝑦𝑛+1). The horizontal step is ℎ𝑛. The 
usual terminology is to call ℎ𝑛 the stepsize at step 𝑛. The vertical step is 𝑚𝑛ℎ𝑛, where 𝑚𝑛 

is the slope at step 𝑛. 
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In the diagram to ’step’ from (𝑥𝑛, 𝑦𝑛) to (𝑥𝑛+1, 𝑦𝑛+1) we have 

𝑥𝑛+1 = 𝑥𝑛 + ℎ𝑛; 𝑦𝑛+1 = 𝑦𝑛 + 𝑚𝑛ℎ𝑛 

The job of a numerical method is to specify how to choose ℎ𝑛 and 𝑚𝑛 at each step. 

11.4 Euler’s Method of numerical approximation 

Our first method will be Euler’s method. Euler’s method is very simple to compute and is 
the only numerical method we will compute by hand. As an aside, it is analogous to using 
rectangles and Riemann sums to approximate an integral. 
Just as in numerical integration, there are fancier numerical methods for solving DEs. 
These methods require more computation than Euler’s and we will leave the computation 
to computers and existing software packages. 
To describe Euler’s method we need to say how to choose ℎ𝑛 and 𝑚𝑛 for each step. 
Euler’s method is a fixed stepsize method. This means we fix the stepsize ℎ at the beginning 
and use it for every step. That is, at each step ℎ𝑛 = ℎ. 
We know that the slope of the solution curve through (𝑥0, 𝑦0) is 𝑦′ = 𝑓(𝑥0, 𝑦0). Euler’s 
method uses this slope to choose 𝑚0, i.e., 𝑚0 = 𝑓(𝑥0, 𝑦0). Likewise, for every subsequent 
step, Euler’s method chooses 𝑚𝑛 to be the slope of the direction field at (𝑥𝑛, 𝑦𝑛), i.e. 

𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 

The next example illustrates how to use Euler’s method. 
Example 11.1. Numerically solving an IVP using Euler’s method. Consider the IVP
𝑦′ = 𝑥2 + 𝑦2; 𝑦(0) = −1. Use Euler’s method to estimate 𝑦(1). 
Solution: We don’t know 𝑦(𝑥) (and it’s hard to find), but we can compute the direction 
field slope at each point. 
Pick a stepsize: To keep the computation short, let’s take ℎ = 0.25. This will take 4 steps 
to go from 𝑥0 = 0 to 𝑥 = 1 

Step 0 : 𝑥0 = 0 𝑦0 = −1 𝑚0 = 1 𝑚0ℎ = 0.25 
Step 1 : 𝑥1 = 0.25 𝑦1 = −0.75 𝑚1 = 0.63 𝑚1ℎ = 0.16 
Step 2 : 𝑥2 = 0.5 𝑦2 = −0.59 𝑚2 = 0.60 𝑚2ℎ = 0.15 
Step 3 : 𝑥3 = 0.75 𝑦3 = −0.44 𝑚3 = 0.76 𝑚3ℎ = 0.19 
Step 4 : 𝑥4 = 1.00 𝑦4 = −0.25 

So, 𝑦(1) ≈ 𝑦4 ≈ −0.25 

https://��0�=0.25
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Example of Euler’s method 

In the next example we introduce a simple tabular format for doing and presenting the 
computation. 
Example 11.2. Let 𝑦′ = 𝑦; 𝑦(0) = 1. Estimate 𝑦(1) 

(Note: we know the exact answer, 𝑦 = 𝑒𝑥, 𝑦(1) = 2.718 …) 

Let ℎ = 0.25, so there are 4 steps from 0 to 1. We organize the calculation in a table: 
𝑛 𝑥𝑛 𝑦𝑛 𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 𝑚𝑛ℎ actual error
0 0 1.0 1.0 0.25 1.0 0.0
1 0.25 1.25 1.25 0.31 1.28 0.03
2 0.5 1.56 1.56 0.39 1.65 0.09
3 0.75 1.95 1.95 0.49 2.12 0.17
4 1.0 2.44 2.7183 0.28 

Notes: 
1. Organize hand calculations like this. 
2. Error often accumulates. 

Example 11.3. (Example continued.) We now continue the previous example with differ-
ent stepsizes. In all cases we are trying to estimate 𝑦(1). 
Stepsize. ℎ = 1 (this is just to be a little silly). 
With ℎ = 1 it takes 1 step to go from 0 to 1.0 
𝑛 𝑥𝑛 𝑦𝑛 𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 𝑚𝑛ℎ actual error
0 0 1.0 1 1.0 1.0 0.0
1 1.0 2.0 2.7183 0.72 

Stepsize. ℎ = 0.1. 
With ℎ = 0.1 it takes 10 steps to go from 0 to 1.0. Here is the table with some of the 
numbers left out. 



11 NUMERICAL METHODS FOR FIRST-ORDER DIFFERENTIAL EQUATIONS 4 

𝑛 𝑥𝑛 𝑦𝑛 𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 𝑚𝑛ℎ actual error
0 0 1 … … 1 0
1 0.1
2 0.2 1.21 … … 1.2214 0.011
3 0.3
4 0.4 1.4641 … … 1.4918 0.028
5 0.5
6 0.6 1.7716 … … 1.8221 0.05
7 0.7
8 0.8 2.1436 … … 2.2255 0.082
9 0.9
10 1.0 2.5937 2.7183 0.125 

Note. The error is smaller when ℎ = 0.1 than when ℎ = 0.25 

Rules of thumb: Using a smaller ℎ is more accurate but requires more computation. 
Mild warning. More computation means more risk of roundoff error. In this class, we 
never make ℎ so small that this is a problem. 

11.5 What can go wrong 

In this section we’ll see that numerical methods can sometimes give misleading results. We 
hasten to add that numerical methods provide an incredibly powerful tool which is used all 
the time with great success. But we do need to take some care to avoid certain pitfalls. 
We expect that decreasing the stepsize should give a more accurate estimate. The next 
example shows that we shouldn’t simply accept the result, no matter how small the stepsize 
used. 
Example 11.4. Consider the IVP 𝑦′ = 𝑦2; 𝑦(0) = 1. Use Euler’s method to approximate 
𝑦(1). 

1Solution: We know the exact solution is 𝑦 = 1−𝑥 , so 𝑦(1) = ∞. But Euler’s method will 
happily estimate 𝑦(1). We do this for several different stepsizes. 
Take ℎ = 0.2 

𝑛 𝑥𝑛 𝑦𝑛 𝑚𝑛 = 𝑓(𝑥𝑛, 𝑦𝑛) 𝑚𝑛ℎ actual error
0 0 1 … … 1 0
1 0.2 1.2 … … 1.25 0.05
2 0.4 1.49 … … 1.67 0.18
3 0.6 1.93 … … 2.5 0.57
4 0.8 2.68 … … 5 2.32
5 1.0 4.11 ∞ ∞ 

So, 𝑦(1) ≈ 𝑦5 = 4.11. 
For decreasing values of ℎ we get the following: 
For ℎ = 0.1, 𝑦(1) ≈ 𝑦10 = 37.6. 
For ℎ = 0.05, 𝑦(1) ≈ 𝑦20 = 91.25. 
For ℎ = 0.025, 𝑦(1) ≈ 𝑦40 = 238.21. 
Instead of settling down to a limiting value as we decrease ℎ, the estimate grows. This is a 
sign that something is wrong with our estimates. 



11 NUMERICAL METHODS FOR FIRST-ORDER DIFFERENTIAL EQUATIONS 5 

11.5.1 Lesson 

You should try smaller and smaller ℎ until the answer settles down. That is, run the 
estimate with stepsize ℎ. The rerun it with stepsize ℎ/2. If the estimates are very close 
then we have one good bit of evidence to accept the estimate as a good approximation. 
Otherwise, try ℎ/4 etc. If the estimate never settles down, then we will have to reject the 
estimates and use other methods. 
The computer doesn’t eliminate the need to think! 
Note. We could make the previous example even more extreme by asking to estimate 𝑦(2). 
The problem is that with the vertical asymptote at 𝑥 = 1 the solution is not even defined 
at 𝑥 = 2. Nonetheless, for any stepsize ℎ Euler’s method will produce an estimate of 𝑦(2). 

Example 11.5. Stepping across region boundaries. The following shows another risk in 
using numerical methods. Consider the IVP 𝑦′ = 𝑦2; 𝑦(−2.5) = −2.5. 
The blue curve is the exact solution to the IVP. It goes asymptotically to 𝑦 = 0 

The orange curve is the Euler approximation using stepsize ℎ = 0.5. It goes off to infinity. 
The problem is that the first step in the approximation goes past the separatrix 𝑦 = 0. 
After that, instead of going asymptotically to 0, the approximation continues to grow. 
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11.6 Other numerical techniques 

All the techniques that we’ll look at take steps of the form 

𝑥𝑛+1 = 𝑥𝑛 + ℎ; 𝑦𝑛+1 = 𝑦𝑛 + 𝑚𝑛ℎ. 

where 𝑚𝑛 is some sort of average slope near (𝑥𝑛, 𝑦𝑛). The differences between the various 
methods are in how 𝑚𝑛 and possibly ℎ𝑛 is chosen at each step. We’ll only touch on this 
briefly. 
Improved Euler (also called RK2). This is a fixed stepsize algorithm, that is we fix 
the value of ℎ before using it. Here is the algorithm: 

1. Start at (𝑥𝑛, 𝑦𝑛) 
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2. Compute the slope 𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛) and take a regular Euler step to a temporary point 
(𝑥𝑎, 𝑦𝑎). 

𝑥𝑎 = 𝑥𝑛 + ℎ; 𝑦𝑎 = 𝑦𝑛 + 𝑘1ℎ. 
3. Compute the slope at (𝑥𝑎, 𝑦𝑎): 𝑘2 = 𝑓(𝑥𝑎, 𝑦𝑎). 
4. Average the two slopes: 𝑚𝑛 = (𝑘1 + 𝑘2)/2. 

5. Use 𝑚𝑛 as the slope to take the Improved Euler step. 
𝑥𝑛+1 = 𝑥𝑛 + ℎ; 𝑦𝑛+1 = 𝑦𝑛 + 𝑚𝑛ℎ. 

Runge-Kutta 4 (RK4). This is also a fixed stepsize algorithm. You can do a web search 
to get the details. In brief, the algorithm computes 4 different slopes 𝑘1, 𝑘2, 𝑘3, 𝑘4 and then 
takes a weighted average of these slopes to get 𝑚𝑛. There are different ways to choose the
𝑘s and the weights, one common scheme is 

𝑘1 = 𝑓(𝑥𝑛, 𝑦𝑛); 𝑘2 = 𝑓(𝑥𝑛 + ℎ/2, 𝑦𝑛 + 𝑘1ℎ/2);
𝑘3 = 𝑓(𝑥𝑛 + ℎ/2, 𝑦𝑛 + 𝑘2ℎ/2); 𝑘4 = 𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3ℎ) 

𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4𝑚𝑛 = .6 
Then as usual, 

𝑥𝑛+1 = 𝑥𝑛 + ℎ; 𝑦𝑛+1 = 𝑦𝑛 + 𝑚𝑛ℎ. 
Variable step size methods. There is no reason we have to have a fixed stepsize. It is 
possible to adjust ℎ at each step. One way to do this is the following: 
Suppose we get to (𝑥𝑛, 𝑦𝑛) with current stepsize ℎ. 

1. Take one RK4 step with stepsize ℎ. 

2. Repeat with stepsize ℎ/2 and 2ℎ. 

3. If the 3 results are very close then change the current stepsize to 2ℎ and take the step. 
If they are not close then change the current stepsize to ℎ/2 and take the step. 

Thus sometimes the stepsize will get bigger and save computation. When needed to main-
tain accuracy it will get smaller. 

11.7 More technical discussion on error size 

(This section is for enrichment only. You will not be asked it on exams.) 

For this discussion, we fix a first-order IVP: 𝑦′ = 𝑓(𝑥, 𝑦); 𝑦(𝑥0) = 𝑦0. We also fix the value 
𝑥𝑓 and ask to approximate 𝑦(𝑥𝑓). 
Euler’s method is linear in the error. This means that the error is roughly proportional 
to ℎ. So, if you halve the stepsize, then you approximately halve the error. Of course, you 
also double the amount of computation. 
Improved Euler is quadratic in the error. This means that the error is roughly 
proportional to ℎ2. So, if you halve the stepsize, then the error is approximately quartered. 
RK4 is a fourth order method. This means that the error is roughly proportional to
ℎ4. So, if you halve the stepsize, then the error is approximately multiplied by 1/16. 
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11.8 Second derivative and concavity 

If we know 𝑦′ = 𝑓(𝑥, 𝑦), then we can find 𝑦″ . This can be used to determine the concavity 
of the integral curve and thus, whether the Euler estimate is an over or underestimate. 
Example 11.6. Assume 𝑦′ = 3𝑥𝑦 and 𝑦(1) = 2. Use Euler’s method to estimate 𝑦(1.1). Is 
the estimate too high or too low? 

Solution: First: 𝑦′(1) = 6. 
Now fix the stepsize ℎ = 0.1. 
The Euler estimate is 𝑦(1.1) ≈ 2 + 0.1 ⋅ 6 = 2.6. 
To find the concavity we compute the second derivative. (Note well that 𝑦 is a function of 
𝑥.) So, 

𝑦″ = (3𝑥𝑦)′ = 3𝑦 + 3𝑥𝑦′, so 𝑦″(1) = 𝑦(1) + 3 ⋅ 𝑦′(1) = 2 + 6 = 8 > 0. 

We see that 𝑦 is concave up at 𝑥 = 1 and therefore the Euler estimate is (probably) too 
low. (Generally speaking, we should be cautious in our statement, because it’s possible the 
graph of 𝑦 changes concavity between 𝑥 = 1 and 𝑥 = 1.1. In this case, since 𝑥, 𝑦, 𝑦′ are all 
positive, it is clear that 𝑦″ > 0 for any solution in the first quadrant.) 

11.9 Relation to numerical integration 

(This section is also just for your enjoyment and enrichment. We won’t discuss it in class 
or on psets or exams.) 

Even in 18.01 you were solving (simple) differential equations. A typical 18.01 integration 

question is to compute ∫
𝑏 

𝑓(𝑥) 𝑑𝑥. We can rephrase this as the following initial value 
𝑎 

problem: 
Let 𝑦(𝑥) be the solution to the IVP 𝑦′ = 𝑓(𝑥); 𝑦(𝑎) = 0. What is 𝑦(𝑏)? 

It is clear that this has solution 𝑦(𝑏) = ∫
𝑏

𝑓(𝑥) 𝑑𝑥. 
𝑎 

Thus for this IVP estimating 𝑦(𝑏) with numerical methods amounts to estimating the defi-
nite integral using numerical methods. More precisely 

Euler’s method = numerical integration using left Riemann sums with rectangles. 
Improved Euler = numerical integration using the trapezoidal rule. 
RK4 = numerical integration using Simpson’s rule. 
Example 11.7. (Euler’s method = left Riemann sum.) For 𝑦′ = 𝑓(𝑥), 𝑦(𝑎) = 0 estimate
𝑦(𝑏) using Euler’s method and 𝑁 steps. 
Solution: 𝑁 steps implies the stepsize is ℎ = 𝑏−𝑎 . Thus Euler’s method gives 𝑁 

𝑦𝑛+1 = 𝑦𝑛 + 𝑓(𝑥𝑛) ℎ. 

This leads to the following table: 
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𝑛 𝑥𝑛 𝑦𝑛 

0 𝑎 0
1 𝑎 + ℎ 𝑓(𝑥0) ℎ 
2 𝑎 + 2 ℎ 𝑓(𝑥0) ℎ + 𝑓(𝑥1) ℎ 
3 𝑎 + 3 ℎ 𝑓(𝑥0) ℎ + 𝑓(𝑥1) ℎ + 𝑓(𝑥2) ℎ 

⋯
𝑁 𝑎 + 𝑁ℎ = 𝑏 𝑓(𝑥0) ℎ + (𝑓(𝑥1) + 𝑓(𝑥2) + … + 𝑓(𝑥𝑁−1)) ℎ 

Thus our approximation is 𝑦(𝑏) = ∑𝑁−1 In 18.01 you might have learned to use𝑗=0 𝑓(𝑥𝑗) ℎ. 
Δ𝑥 instead of ℎ. In either case, the approximation is the left Riemann sum approximating 

∫
𝑏 

𝑓(𝑥) 𝑑𝑥. 
𝑎 
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