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12 Autonomous equations and bifurcation diagrams 

12.1 Goals 

1. Know the standard form of an autonomous, first-order differential equation. 

2. Be able to use critical points to draw the phase line for an autonomous, first-order 
DE. 

3. Be able to draw the bifurcation diagram for an autonomous, first-order DE with a 
parameter. 

4. Be able to interpret phase lines and bifurcation diagrams in terms of population 
dynamanics and sustainability. 

12.2 Introduction 

In this topic we look at, so-called, autonomous equations. These are a special type of 
nonlinear first-order equations. In general, rather than solve these equations, we will try to 
understand the long-term behavior of the systems they model without finding the solution. 
When the system includes a parameter, we will draw bifurcation diagrams which give us 
a system level view of the long-term behavior of the system for all possible values of the 
parameter. This is analagous to our use of gain curves, which tell us, in one graph, the 
behavior of the system for all possible input frequencies. 
The Phase Lines Mathlet https://mathlets.org/mathlets/phase-lines/ illustrates ev-
erything we will do in this topic. We encourage you to look at it! 

12.3 Autonomous differential equations 

Definition. An autonomous first-order differential equation has the form 

𝑥′(𝑡) = 𝑓(𝑥). 

(Compare this to the general first-order DE which has the form 𝑥′ = 𝑓(𝑥, 𝑡).) 

The word autonomous means self-governing. That is, 𝑥′ , the rate that 𝑥 changes, depends 
only on 𝑥 and not on 𝑡. 
Here are some important properties of autonomous equations: 
1. They are separable. 
2. They can be hard to integrate. 
3. We can say a lot about them without solving them. (More on this below.) 
4. They are time invariant: if 𝑥(𝑡) is a solution then so is 𝑥(𝑡 − 𝑡0). 
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12.4 Direction fields and phase lines for autonomous equations 

Our most important DE, 𝑥′ = 𝑘𝑥, is autonomous. We will use it to introduce phase lines 
for such equations. First, we look at its direction field. 
Example 12.1. Use isoclines to draw the direction field for the DE 𝑥′ = −𝑥. Put the 
phase line (to be defined) next to it. 
Solution: The isocline for slope 𝑚 is 𝑓(𝑥) = −𝑥 = 𝑚. This is a horizontal line. we draw 
the direction field and a few solutions using isoclines for 𝑚 = 0, 1, 2, 3, −1, −2, −3. 
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𝑑𝑥 Left: direction field for = −𝑥. Right: phase line 𝑑𝑡 
As always the nullcline separates the plane into regions where 𝑥′ is positive and negative. 
These are marked with a big + and − on the direction field. 
The phase line is a simplified version of the direction field. Since the direction field is 
independent of 𝑡, we just throw away the 𝑡-axis. The phase line is the 𝑥-axis. On it we 
mark the 𝑥-value of each nullcline, i.e., 𝑥 = 0. Instead of slope field elements we put arrows 
indicating the direction of the slope field. These correspond to the big + and − in the 
direction field. In our example we have a down arrow in the region 𝑥 > 0 and an up arrow 
in the region 𝑥 < 0. 
This simple example shows two important properties of autonomous equations. 
1. For autonomous equations 𝑥′ = 𝑓(𝑥), the isoclines are always horizontal lines. This is 
because the equation 𝑓(𝑥) = 𝑚 is independent of 𝑡. 
2. Any integral curve can be translated left or right and it is still an integral curve. That 
is, if 𝑥(𝑡) is a solution then so is 𝑥(𝑡 − 𝑡0). This is easy to see because the direction field is 
the same if you translate it right or left. 

12.5 Equilibria, nullclines, constant solutions and critical points 

For autonomous equations we will use a number of different words to describe nullclines. 
We’ll introduce them through an example. 
Example 12.2. Let 𝑥′ = (1 − 𝑥)(2 − 𝑥). Draw a direction field consisting of just the 
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nullclines and large + or − signs indicating regions where the direction field has positive 
or negative slope. Using just this, sketch some solutions, including the ones along the 
nullclines. 
Then use your direction field to draw the phase line for this system. 
Solution: We have 𝑥′ = 𝑓(𝑥) = (1 − 𝑥)(2 − 𝑥). The nullcline is where 𝑓(𝑥) = 0, i.e., 𝑥 = 1 
and 𝑥 = 2. These are horizontal lines in the 𝑡𝑥-plane. It’s easy to check that 𝑥′ > 0 when
𝑥 > 2 or 𝑥 < 1 and 𝑥′ < 0 when 1 < 𝑥 < 2. The sign of 𝑥′ in different regions is marked 
with a + or a −. 
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Direction field and phase line for 𝑥′ = 𝑓(𝑥) = (1 − 𝑥)(2 − 𝑥). 
Now for the main point of this example: The nullclines 𝑥 = 1 and 𝑥 = 2 are clearly solutions. 
We use the following terms to describe them. 
Because they are constants, they are called constant solutions. 
Because they are unchanging, they are called equilibrium solutions. 
Because 𝑥′ = 0 along them, we call 𝑥 = 1 and 𝑥 = 2 critical points for the DE. 
To finish the example we added solution curves. In regions where 𝑥′ > 0 the solution curves 
are increasing. Because the equilibrium solutions act as fences, these solutions can’t cross 
them. So we get the picture as shown. 
The phase line is drawn next to the direction field. The arrows on the phase line show the 
sign of 𝑥′ , i.e., the direction of the slope field, for different ranges of 𝑥. 

12.5.1 Lost solutions 

𝑑𝑥 Finally, nullclines correspond to lost solutions: The equation = 𝑓(𝑥) is separable. When 𝑑𝑡 𝑑𝑥 we separate variables we get So there are lost solutions where 𝑓(𝑥) = 0. These𝑓(𝑥) 
= 𝑑𝑡. 

are the nullclines (or constant solutions or equilibrium solutions). 
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12.6 Stability of equilibria 

In general, we say an equilibrium is stable if nearby solutions go asymptotically to the 
equilibrium value. 
Example 12.3. Looking at Example 12.2, give each equilibrium and say whether it is 
stable or unstable. 
Solution: The equilibria are the same as the constant solutions. These are 𝑥 = 1 and
𝑥 = 2. Looking at the phase line, we see clearly that 𝑥 = 1 is stable and 𝑥 = 2 is unstable. 
You can see the same thing in the direction field. 

12.7 Analyzing an autonomous DE 

We will use the following steps to analyze the autonomous DE 𝑥′ = 𝑓(𝑥). 
1. Find the critical points 𝑥′ = 𝑓(𝑥) = 0 and plot them on the phase line. 
2. Determine the sign of 𝑥′ for different values of 𝑥. Use these to put arrows on the phase 
line. This can be done algebraically or graphically. 
3. Determine the stability of the equilibrium solutions. 
4. If desired, sketch some solutions in the 𝑡𝑥-plane. 
We illustrate this with some examples. 
Example 12.4. Let 𝑥′ = −𝑘(𝑥 − 𝐴). This models Newton’s law of cooling for a body of 
temperature 𝑥 in an environment of temperature 𝐴. We assume that 𝑘 and 𝐴 are constants, 
with 𝑘 > 0. 
Plot the phase line. Be sure to indicate the stability of the equilibrium solutions. Also, give 
a rough sketch of solutions in the 𝑡𝑥-plane. 
Solution: First, note that this equation is simple enough that we actually know the general 
solution 

𝑥 = 𝐴 + 𝑐𝑒−𝑘𝑡. 
You should check that our answers agree with this! 
We follow the steps outlined above. 
1. Find the critical points: 𝑓(𝑥) = −𝑘(𝑥 − 𝐴) = 0 implies 𝑥 = 𝐴. This is indicated on the 
phase line below. Remember: For autonomous equations, critical points are the same as 
equilibrium solutions. 
2. Determine the sign of 𝑥′ for different 𝑥: This is the same algebra you used in 18.01 when 
graphing a function and looking for regions where it increases and decreases. 
It’s easy to see that when 𝑥 > 𝐴 we have 𝑥′ = −𝑘(𝑥 − 𝐴) < 0. Likewise, when 𝑥 < 𝐴 we 
have 𝑥′ > 0. We use this to add arrows to the phase line. For this example, we also label 
regions with a + or −. 
3. The arrows on the phase line show that the equilibrium 𝑥 = 𝐴 is stable. 
4. Directly from the phase line, we can sketch some solutions. Note: these are in the
𝑡𝑥-plane. The equilibrium solution is the horizontal line 𝑥 = 𝐴. The other solutions are 
strictly qualitative: they are drawn to show that all solutions go asymptotically to the 
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Example 12.5. (Logistic equation.) Consider the autonomous system 

𝑥′ = 𝑘(𝑀 − 𝑥)𝑥 = 𝑓(𝑥). 

We assume 𝑘 and 𝑀 are positive constants. This is called a logistic population model. For 
the population 𝑥 it models the growth rate as 𝑘(𝑀 − 𝑥). The growth rate depends on 𝑥, 
and decreases as 𝑥 increases. (Compare this with the exponential model 𝑥′ = 𝑎𝑥, where the 
growth rate is constant.) This model captures the notion that, as the population increases, 
the competition for scarce resources leads to a lower growth rate. If the population gets too 
large the growth rate will become negative. 
Plot the phase line for this system and sketch some solutions. 
Solution: We follow the standard steps 

1. Critical points: 𝑥′ = 𝑘(𝑀 − 𝑥)𝑥 = 0 gives critical points 𝑥 = 𝑀 or 𝑥 = 0. 
2. Looking at the 𝑥 axis, it is clear we have the following signs for 𝑥′ : 
when 𝑥 > 𝑀 , then 𝑥′ < 0, 
when 0 < 𝑥 < 𝑀 , then 𝑥′ > 0, 
when 𝑥 < 0, then 𝑥′ < 0, 
3. Using 1 and 2 we can draw the phase line. This shows that 𝑥 = 𝑀 is a stable equilibrium 
and 𝑥 = 0 is unstable. 
4. Finally, it is a simple matter to sketch solution curves: they can’t cross the equilibria 
and must go towards the stable equilibrium and away from the unstable equilibrium. As 
before, these are made up, but they capture the qualitative nature of the solutions. 
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Notes. 1. The S shaped curves between 0 and 𝑀 are called logistic curves. The Wikipedia 
article https://en.wikipedia.org/wiki/Logistic_function gives a number of applica-
tions where the logistic function appears. 
2. Because the population stabilizes at 𝑀 and the growth rate becomes negative if 𝑥 > 𝑀 , 
we call 𝑀 the carrying capacity of the environment. 
3. It is difficult to find the reason for the name logistic. The term was coined around 1844 
by the French mathematician Pierre François Verhuist. (See the same Wikipedia article 
cited above.) 

12.7.1 Graphical method for determining the sign of 𝑥′ . 

In the examples above we found the sign on 𝑥′ by testing values in different ranges of 𝑥. 
Here we’ll show an alternative graphical method. The trick is to graph 𝑥′ vs. 𝑥. When 
doing this, we are viewing 𝑥′ as a variable. We illustrate by redoing some of the examples. 
Example 12.6. Find the phase line from Example 12.4 by graphing 𝑥′ vs. 𝑥 and putting 
the phase line on the 𝑥-axis. 
Solution: In the example we have 𝑥′ = −𝑘(𝑥 − 𝐴). The graph of this is the negatively 
sloped line shown below. It is now easy to see the sign of 𝑥′ as a function of 𝑥. When
𝑥 > 𝐴, the graph is below the 𝑥 axis, so 𝑥′ is negative. Likewise, when 𝑥 < 𝐴, the graph is 
above the 𝑥-axis, so 𝑥′ is positive. We mark these regions with − and +. The arrows on 
the 𝑥-axis correspond to these signs. Magically, the 𝑥-axis now shows the phase line for the 
system. 

x

x′

x′ = f(x)

A
+ −

𝑥′ vs. 𝑥. The 𝑥-axis shows the phase line. 
Example 12.7. Find the phase line from Example 12.5 by graphing 𝑥′ vs. 𝑥 and putting 
the phase line on the 𝑥-axis. (The DE is 𝑥′ = 𝑘(𝑀 − 𝑥)𝑥.) 

Solution: As in the previous example we plot 𝑥′ vs. 𝑥. Then we use the sign of 𝑥′ to 
add arrows to the 𝑥-axis. The plot is a downward pointing parabola. As before, the 𝑥-axis 
shows the phase line. 
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𝑥′ vs. 𝑥. The 𝑥-axis shows the phase line. 

https://en.wikipedia.org/wiki/Logistic_function
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Example 12.8. The following shows the graph of 𝑥′ = 𝑓(𝑥). Use the graph, to draw the 
phase line for this system. Indicate the critical points and their stability. 
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Solution: We add arrows to the graph. The critical points are marked green for stable and 
orange for unstable. 
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12.8 Parameters and bifurcation diagrams 

Bifurcation diagrams help us visualize how the system behaves at different settings of a 
given control parameter. This is similar to what we did when we graphed gain vs. input 
frequency. The input frequency is a parameter and the gain curve lets us see in one figure 
how the system responds to any frequency. 
We’ll get at this idea using examples. 

12.8.1 Logistic with harvesting population model 

Example 12.9. This example will not show a bifurcation diagram. Instead, we will try to 
show how we might be led to inventing bifurcation diagrams. 
Suppose you are growing irises. Left alone in your garden, the population of irises follows 
a logistic population model 

𝑥′ = (3 − 𝑥)𝑥, 
where 𝑥 is in units of 1000 irises and time is in units of months. 
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© Dlanglois on Wikimedia. License CC BY-SA. Some rights reserved. This content is excluded from 
our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use. 

Your plan is to harvest and sell the flowers at a constant rate of 𝑎 units/month. With this level 
of harvesting, the population model becomes 

𝑥′ = 𝑓(𝑥) = 𝑥(3 − 𝑥) − 𝑎. (1) 

You know that if 𝑎 is too large then the iris population will crash and you’ll go out of 
business. So your first goal to understand what happens to the population for different 
values of 𝑎. 
For any value of 𝑎, we can draw the phase line and determine how the population will 
respond at that value. So your assignment for the population model in Equation 1 is to 
draw phase lines for every value of 𝑎! 
Okay, that is probably too hard, let’s just do it for each of the values 𝑎 = 0, 1, 2, 3, 4. 
Solution: It’s not hard to compute critical points for each of these 𝑎. We don’t show the 
calculation. Here are the phase lines 
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The phase lines for 𝑎 = 0, 1, 2 each have two critical points. The upper one is stable and 
the lower one is unstable. For 𝑎 = 3, 4, there are no critical points. 
Clearly, it’s a bad idea to harvest at the rates 𝑎 = 3 or 𝑎 = 4. In these cases the population 
will decrease to 0. So these rates are not sustainable. 
The rates 𝑎 = 0, 1, 2 each have a positive stable critical point. In all three cases, if we wait 
to start harvesting until the population is about 1.5, then the population will go to the 
stable critical value. This is sustainable. 
Our conclusion is that it is possible to harvest at the rate 𝑎 = 2 without ruining our 
business. 

https://ocw.mit.edu/help/faq-fair-use
https://commons.wikimedia.org/wiki/File:Iris_versicolor_3.jpg
https://commons.wikimedia.org/wiki/User:Dlanglois
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12.8.2 Sustainability 

Definition. If the population model has a positive stable critical point we say the popula-
tion is sustainable. 
Note. Sustainability doesn’t mean you can’t mess it up. For instance, in Example 12.9, 
if 𝑎 = 2 and we start harvesting when 𝑥 = 0.5, then the population will crash to 0. This 
would be a bad idea, but we still say that 𝑎 = 2 is a sustainable harvesting rate. That is, 
as long as you do it right and start harvesting when the population is large enough, then 
the population will stabilize at the stable critical point. 

12.8.3 Bifurcation diagrams 

In the previous example we were unable to draw phase lines for every value of 𝑎, so we drew 
a small number of them to help choose a harvesting rate. We saw that we could sustainably 
harvest when 𝑎 = 2, but not at 𝑎 = 3. What about other values of 𝑎? This is the motivation 
behind bifurcation diagrams, they’ll show us how the system behaves for all values of 𝑎 in 
one simple graph. 
Definition. Suppose we have a population 𝑥(𝑡) with a model which depends on a parameter 
𝑎. The bifurcation diagram for this model is the plot of all the points (𝑎, 𝑥) in the 𝑎𝑥-plane 
where the model has a critical point. We always indicate on the diagram whether the critical 
points represent stable or unstable equilibria. 
We illustrate bifurcation diagrams by redoing Example 12.9. 
Example 12.10. Draw the bifurcation diagram for the logistic with harvesting model 

𝑥′ = 𝑥(3 − 𝑥) − 𝑎 

For which values of 𝑎 is the population sustainable? 

Solution: We use the following steps. 
Step 1. Draw the 𝑎𝑥-axes. Be sure to label them! 
Step 2. Compute and plot all the critical points. In this case we have 

𝑥(3 − 𝑥) − 𝑎 = 0 ⇒ 𝑎 = 𝑥(3 − 𝑥). 
Since 𝑎 is the horizontal axis, the graph of this is a sideways parabola: 

a

x

3

Step 3. The plot divides the plane into 2 regions (inside and outside the parabola). Since 
the plot is the set of points where 𝑥′ = 0, the sign of 𝑥′ is the same throughout each region. 
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We can find those signs by testing points in each region. For example, at the point (𝑎, 𝑥) = 
(0, 1), we have 𝑥′ = 2 > 0. So, inside the parabola, we have 𝑥′ > 0. Likewise, at (0, 4),
𝑥′ = −4 < 0. So, outside the parabola, we have 𝑥′ < 0. 
Another method, which amounts to the same thing, is to use phase lines. Below, the phase 
line for 𝑎 = 0 is shown on the left and also on the bifurcation diagram. On the bifurcation 
diagram it is the vertical line at 𝑎 = 0. 

x

3

0

−

+

−
stable

unstable

Phaseline: a = 0
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Bifurcation diagram

The arrows tell us the sign of 𝑥′ at points on the phase line. Which, just like testing points, 
allows us to give the sign of 𝑥′ in the two regions determined by the critical points. 
These signs then tell us the stability of the critical points. In this example, the upper branch 
of the parabola consists of stable critical points and the lower branch consists of unstable 
critical points. 
It is a simple matter to use the signs to add a few more phase lines to our picture. We add 
one through the vertex of the parabola and also ones to the left and right of the vertex. 
The phase line through the vertex of the parabola shows it is semistable. The vertex is 
at the maximum value of 𝑎 as a function of 𝑥. In this case, it’s easy use calculus, or the 
geometry of parabolas, to find these coordinates: 𝑎 = 2.25, 𝑥 = 1.5. 
Finally we can say when the population is sustainable: Since there is a positive stable 
critical point for 𝑎 < 2.25, the population is sustainable in this region. It is not sustainable 
for 𝑎 ≥ 2.25. 
Definition. A bifurcation point is any value of 𝑎 where there is a qualitative change in the 
critical points. 
In the previous example, the value 𝑎 = 2.25 is the point where the critical points change 
–there are two critical points for 𝑎 < 2.2.5 and none for 𝑎 > 2.25. Therefore, 𝑎 = 2.25 is 
called a bifurcation point. 
Example 12.11. Suppose a population is modeled by the DE 𝑥′ = −𝑎𝑥 + 1, which is a 
constant birth-and-death rate, modified to include a constant rate of replenishment. 
(i) Sketch the bifurcation diagram and list any bifurcation points (i.e., special values of 𝑎). 
(ii) The bifurcation point(s) divide the 𝑎-axis into intervals. Illustrate one case for each 
interval by giving the phase line diagram. For each of these phase lines give (rough) sketches 



11 12 AUTONOMOUS EQUATIONS AND BIFURCATION DIAGRAMS 

of solutions in the 𝑡𝑥-plane. 
(iii) For what values of 𝑎 is the population sustainable. What happens for other values of 
𝑎. 
Note the MIT Mathlet The Phase Lines Mathlet https://mathlets.org/mathlets/phase-lines/ 
can show this system. 
Solution: We answer (i) and (ii) together. The critical points are 𝑥′ = −𝑎𝑥 + 1 = 0. So,
𝑥 = 1/𝑎. We graph this in the 𝑎𝑥-plane –it’s a hyperbola with two branches. Here is the 
finished bifurcation diagram with two phase lines. These are explained below. 
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Bifurcation diagram for x′ = 1− ax
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After plotting the critical points we see that the graph divides the 𝑎𝑥-plane into 3 regions. 
In order to determine the sign of 𝑥′ in each region we found phase lines for 𝑎 = 1 and 𝑎 = −1. 
These are shown at the left. Determining the direction of the arrows was straightforward 
and we leave it for the reader to supply the details. 
We place the phase lines on the bifurcation diagram at 𝑎 = 1 and 𝑎 = −1. The arrows on 
the phase lines then tell us the sign of 𝑥′ in all 3 regions. 
Once we know the sign on 𝑥′ , it’s a simple matter to decide the stability of each part of the 
diagram. The stable branch is drawn in green and labeled ‘stable’. Likewise the unstable 
branch is drawn in orange and labeled ‘unstable’. 
There is one bifurcation point at 𝑎 = 0. This is a bifurcation point because the bifurcation 
diagram is different on either side of 𝑎 = 0. 
(iii) When 𝑎 > 0 there is a positive stable equilibrium, so the population is sustainable. 
When 𝑎 ≤ 0 the population is not sustainable. In fact, it blows up to infinity. 
Finally, we do our duty and sketch some solution curves based on the phase lines. 

https://mathlets.org/mathlets/phase-lines/
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You can look at this example and the logistic with harvesting example in the Phase Lines 
Mathlet https://mathlets.org/mathlets/phase-lines/ phase lines applet: 

12.9 Appendix: solution to logistic equation 

Just for kicks, we compute the exact solution to the logistic population model 

𝑥′ = 𝑘𝑥(𝑀 − 𝑥) 

This is separable. We need to use partial fractions to integrate the 𝑥 side. 

𝑑𝑥 
𝑥(𝑀 − 𝑥) 

= 𝑘 𝑑𝑡. 

𝑑𝑥 So, ∫ 𝑥(𝑀 − 𝑥) 
= 𝑘𝑡 + 𝐶. 

1 1/𝑀 + 
1/𝑀 Partial fractions: 𝑥(𝑀 − 𝑥) 

= 𝑥 𝑀 − 𝑥. 

𝑑𝑥 ln(|𝑥|) − 
ln |𝑀 − 𝑥| 1 |𝑥|So, ∫ = 𝑀 

ln (𝑥(𝑀 − 𝑥) 
= 𝑀 𝑀 |𝑀 − 𝑥|) . 

|𝑥|So, ln (|𝑀 − 𝑥|) = 𝑀𝑘𝑡 + 𝐶. 
𝑥 Exponentiating and changing 𝑒𝑀𝐶 to 𝐶 gives: 𝑀 − 𝑥 

= 𝐶𝑒𝑀𝑘𝑡. 

𝑀𝐶𝑒𝑀𝑘𝑡 

Solving for 𝑥: 𝑥(𝑡) = 1 + 𝐶𝑒𝑀𝑘𝑡 
. 

𝑀𝐶 We can also rewrite this as 𝑥(𝑡) = 𝑒−𝑀𝑘𝑡 + 𝐶 
. 

We were a little sloppy with the absolute values, but more care would give the same results. 
Note: If 𝐶 > 0 then the solution 𝑥(𝑡) has 0 < 𝑥 < 𝑀 . If 𝐶 is negative, then these solutions 
blow up when 𝑒−𝑀𝑘𝑡 + 𝐶 = 0. 

https://mathlets.org/mathlets/phase-lines/
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