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13 Linear algebra: vector spaces, matrices and linearity 

13.1 Goals 

1. Know the definition of a vector space and how to show that a given set is a vector 
space. 

2. Know the meaning of the phrase closed under addition and scalar multiplication. 

3. Know how to convert a higher order DE into the companion system of first-order DEs. 

4. Know how to organize matrix multiplication as a linear combination of the columns 
of the matrix. 

5. Know how to organize matrix multiplication in block form and recognize when block 
multiplication is valid. 

13.2 Introduction 

Up to now we have spent most of our time in 18.03 considering linear differential equations. 
For these, one of our main tools was linearity, or, equivalently, the superposition principle. 
There are many other domains where linearity is important. For example, systems of linear 
algebraic equations and matrices. In this next unit on linear algebra we will study the 
common features of linear systems. 
To do this we will introduce the somewhat abstract language of vector spaces. This will 
allow us to view the plane and space vectors you encountered in 18.02 and the general 
solutions to a differential equation through the same lens. In 18.02 vectors had both an 
algebraic and a geometric interpretation. In 18.03 we will focus primarily on the algebraic 
side of vectors, though we will sometimes use our geometric intuition as a guide. 

13.3 Matlab (and alternatives) 

We will use Matlab for computation and visualization. It will allow us to work with larger 
matrices where we wouldn’t want to do computations by hand. We will only use a tiny 
subset of Matlab’s enormous set of functions. I’ll post some simple (and short) tutorials on 
its use. 
Matlab is available for free to MIT students. 
A free substitute for Matlab is Octave. It has the advantage that it loads much faster and 
doesn’t spread digital rights management files all around your computer. The disadvantage 
is that it can be a little harder to install, especially on the Mac. Look at https://www. 
gnu.org/software/octave/download.html. I can help you get it installed if you want to 
try. 
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Another excellent and free substitute is Julia. The syntax is similar, but not identical, to 
Matlab. Downloads and documentation are available at https://julialang.org. 

13.4 Linearity and vector spaces 

We’ve seen before the importance of linearity when solving differential equations 𝑃 (𝐷)𝑥 = 
𝑓(𝑡). To remind you: the operator 𝑃 (𝐷) is linear means that 

𝑃 (𝐷)(𝑐1𝑓 + 𝑐2𝑔) = 𝑐1𝑃 (𝐷)𝑓 + 𝑐2𝑃 (𝐷)𝑔 

for all functions 𝑓 , 𝑔 and constants 𝑐1, 𝑐2. 
Matrix multiplication is also linear. If 𝐴 is a matrix and v1, v2 are vectors, then 

𝐴 ⋅ (𝑐1v1 + 𝑐2v2) = 𝑐1𝐴 ⋅ v1 + 𝑐2𝐴 ⋅ v2 

Example 13.1. In this example we will write an matrix multiplication in a way that 
emphasizes the linearity. 

[6 5 
7 + 8] = [6(3 + 4) + 5(7 + 8) 

2] [3 + 4 
1 (3 + 4) + 2(7 + 8) 

] 

= [6 ⋅ 3 + 5 ⋅ 7 + 6 ⋅ 4 + 5 ⋅ 8
1 ⋅ 3 + 2 ⋅ 7 + 1 ⋅ 4 + 2 ⋅ 8] 

= [6 5 5
2] [7

3] + [6 
2] [8

4]1 1 

Linearity/Superposition 
Exactly like solving linear differential equations, solving linear systems of algebraic equations 
involves finding a particular solution and superpositioning with the homogeneous solution. 

1 3 2 
Example 13.2. Solve ⎡⎢4 12⎥⎤ [𝑥1] = ⎡⎢8⎥⎤𝑥2⎣3 9 ⎦ ⎣6⎦ 

Solution: For this example we’ll use ad hoc methods to find particular and homogeneous 
solutions. Later, we will learn systematic methods. The main point here is that the solutions 
can be superpositioned. 

By inspection we can see one solution is xp = [0
2]. Just as valid would be to take 

= [−1 = [ 
5 xp 1 ] or xp −1]. 

Next we have to solve the associated homogeneous equation: 

1 3 0
⎡ ⎤ [𝑥

𝑥
1
2 

⎤⎢4 12⎥ ] = ⎢⎡0⎥
⎣3 9 ⎦ ⎣0⎦ 

This expands to three equations in two unknowns. You can easily check that the general 

solution is xh = 𝑐 [ 
3

−1]. 

https://julialang.org
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By superposition, the solution to the original equation is 

x = xp + xh = [−1
1 

] + 𝑐 [−1
3 ] . 

If this is unclear, you should check the solution by substitution. 

13.5 Vector spaces 

The word space is used in mathematics to describe a set with extra properities. Math has 
all kinds of spaces. Here we will be concerned with vector spaces. 
In order to have the notions of linearity and superposition, we need to have the notions of 
adding and scaling. This leads to the definition of vectors, whose key property is that they 
can be added and scaled. 
Definition. A vector space is any set 𝑉 with the following properties. 
1. The set 𝑉 has the arithmetic operations of addition and scalar multiplication. 
2. Closure under addition: The sum of any two elements in 𝑉 is another member 𝑉 . That 
is, if v, w ∈ 𝑉 , then v + w ∈ 𝑉 . 
3. Closure under scalar multiplication: Scaling an element of 𝑉 results in another member 
of 𝑉 . That is, if v ∈ 𝑉 and 𝑐 is a scalar, then 𝑐v ∈ 𝑉 . 
4. Distributive law: If v, w ∈ 𝑉 and 𝑐 is a scalar, then 𝑐(v + w) = 𝑐v + 𝑐w. 

• An element v in 𝑉 is called a vector. 

• The formal definition of a vector space requires some more technical properties, but 
this definition will suffice for 18.03. 

• If the scalars are required to be real numbers, we say we have a real vector space. If 
we allow them to be complex numbers, then we have a complex vector space. 

The next few examples will introduce some important vector spaces and show how to check 
whether or not a given set is a vector space. 
Key point. Checking whether or not a given set is a vector space is always easy. This is 
similar to checking whether a given operator is linear. 
Example 13.3. Show that the set of ordered pairs (𝑥, 𝑦), under the usual rules of addition 
and scalar multiplication, is a vector space. 
Solution: We have to show the set satisfies the four properties in the definition of vector 
space. As we said, this is straightforward. 
1. Multiplication and scalar multiplication: By definition we have these operations. 
2. Closure under addition: Take any two ordered pairs (𝑥1, 𝑦1) and (𝑥2, 𝑦2). Their sum,
(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (𝑥1 + 𝑥2, 𝑦1 + 𝑦2) is also an ordered pair. 
3. Closure under scalar multiplication: Take any ordered pair (𝑥, 𝑦) and scalar 𝑐, then
𝑐(𝑥, 𝑦) = (𝑐𝑥, 𝑐𝑦) is also an ordered pair. 
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4. Distributive law: We show this without any commentary: 

𝑐 ((𝑥1, 𝑦1) + (𝑥2, 𝑦2)) = 𝑐(𝑥1 + 𝑥2, 𝑦2 + 𝑦2) = … = 𝑐(𝑥1, 𝑦1) + 𝑐(𝑥2, 𝑦2). 

Since the set satisfies the four properties, it is a vector space. 
Example 13.4. (Vector spaces.) The following are all examples of vector spaces. You 
should be able to check this exactly as we did in the previous example. 

• We denote the plane by R2. It is the set of all ordered pairs (𝑥, 𝑦). 

• We denote space by R3. It is the set of all ordered triples (𝑥, 𝑦, 𝑧). 

• The powers indicate the dimension of each space. Likewise we can work with high 
dimensional vector spaces like R1000 which consists of all lists of 1000 numbers. 

• In 18.03 we have used the fact that functions can be added and scaled. The set of 
solutions to the homogeneous DE 

𝑥″ + 8𝑥′ + 7𝑥 = 0 

is a vector space. That is, the set {𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡} satisfies the above requirements 
1-4 for a vector space. 

Example 13.5. (Non-vector spaces.) The following are not vector spaces. 
1. The set of plane vectors in the first quadrant. This fails to be closed under scalar 
multiplication. For example, (1, 1) is in the first quadrant, but −2 ⋅ (1, 1) = (−2, −2) is not. 

𝑦 

𝑥 

(1, 1) 

−2 ⋅ (1, 1) 

2. The set of functions of the form cos(6𝑡) + 𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡. This fails to be closed under 
addition. For example, 

(cos(6𝑡) + 2𝑒−𝑡 + 3𝑒−7𝑡) + (cos(6𝑡) + 𝑒−𝑡 + 4𝑒−7𝑡) = 2 cos(6𝑡) + 3𝑒−𝑡 + 7𝑒−7𝑡 

The sum is not in the set because of the factor of 2 in front of cos(6𝑡). 

13.6 Connection to DEs 

We will give two examples showing directly how matrices arise in differential equations. 
Example 13.6. The companion matrix -converting a higher order DE to a first-order 
system. Here we are going to convert a higher order differential equation into a system of 
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first-order equations. Later we will see how this technique allows us to understand DEs in 
a new way and also how it allows us to use numerical techniques on higher order equations. 
Consider the second-order linear differential equation 

𝑥 + 8̈ ̇𝑥 + 7𝑥 = 0. 

We’ve worked this example many times. The general solution is 𝑥 = 𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡. 
To convert the DE to a matrix system, we introduce a new variable: 𝑦 = 𝑥.̇ Now, substi-
tuting 𝑦 for 𝑥̇ in the original DE we get the equation 𝑦 + 8𝑦 + 7𝑥 = 0. Altogether we have ̇ 
the system of two first-order linear DEs: 

𝑥̇ = 𝑦 
𝑦 ̇ = −7𝑥 − 8𝑦 

This can be rewritten in matrix form: 

𝑥̇ 1[𝑦]̇
 

= [−7
0 

−8] [𝑥
𝑦] 

Notice two things: 

1. If we write this abstractly with x = [𝑥
𝑦] and 𝐴 = [ 0 

−8
1 ], it looks like ẋ = 𝐴x.−7 

Ignoring the fact that x is a vector and 𝐴 is a matrix, this looks like our most important 
DE: 𝑥̇ = 𝑎𝑥. 
2. Solving the system is equivalent to solving the original equation. That is, if we solve the 
original equation, we’ll have found 𝑥 and hence 𝑦 = 𝑥.̇ Conversely, if we solve the matrix 
system, we’ll have found 𝑥 (the solution to the orginal DE) and 𝑦 = 𝑥.̇ 
In this case we already know the solution to the DE, so the solution to the system is 

[𝑥
𝑦] = [𝑥 𝑐1𝑒−𝑡 + 𝑐2𝑒−7𝑡 

−1] + 𝑐2𝑒−7𝑡 [ 
1

𝑥]̇
 

= [−𝑐1𝑒−𝑡 + −7𝑐2𝑒−7𝑡] = 𝑐1𝑒−𝑡 [ 
1 

−7] 

Notice that the basic solutions are of the form 𝑒𝑟𝑡v, where v is a constant vector. Later, 
we will use the method of optimism to guess solutions of this form. 
Definition. The matrix 𝐴 of coefficients that arises from this technique will be called the 
companion matrix to the original DE. 

Example 13.7. Heat Flow. In this example we will set up a model for heat flow. We 
won’t solve it for a few days. 
Suppose we have a metal rod where different parts are at different temperatures. We divide 
it into 3 regions and imagine that each region exchanges heat with the adjacent regions. 
The regions on either end also exchange heat with the environment. We assume that the 
top and bottom of the rod are insulated, so that heat can only flow out of the bar at the 
ends. We also assume that the heat transfer follows Newton’s law and the rate constant is 
𝑘 at each interface. 
The figure below shows the metal bar divided into 3 regions and insulated above and below. 
The temperature of each region and the temperature of the environment on the left and 
right ends are indicated in the figure. 
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T1 T2 T3EL ER

Using Newton’s law we can write a DE for the temperature of each region. 

𝑇1̇ = −𝑘(𝑇1 − 𝐸𝐿) − 𝑘(𝑇1 − 𝑇2) = −2𝑘𝑇1 + 𝑘𝑇2 + 𝑘𝐸𝐿 

𝑇2̇ = −𝑘(𝑇2 − 𝑇1) − 𝑘(𝑇2 − 𝑇3) = 𝑘𝑇1 − 2𝑘𝑇2 + 𝑘𝑇3
𝑇3̇ = −𝑘(𝑇3 − 𝑇2) − 𝑘(𝑇3 − 𝐸𝑅) = 𝑘𝑇2 − 2𝑘𝑇3 + 𝑘𝐸𝑅 

We can write this in matrix form 

𝑇1̇ −2𝑘 𝑘 0 𝑇1 𝑘𝐸𝐿 ⎡𝑇2̇
⎤ = ⎡ 𝑘 −2𝑘 𝑘 ⎤ ⎡𝑇2

⎤ + ⎡ 0 ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣𝑇3̇ ⎦ ⎣ 0 𝑘 −2𝑘⎦ ⎣𝑇3⎦ ⎣𝑘𝐸𝑅⎦ 

Remark: This particular coefficient matrix occurs quite often in applications. You should 
make sure you know how to modify the equation if we use 𝑛 divisions of the rod instead of 
3. 

13.7 Matrix Multiplication 

Here we will assume that you are comfortable with matrices and matrix multiplication. For 
completeness, we’ve added a quick review of some of the basics below. 
Combination of columns 
We can view the result of multiplying a matrix times a vector as a linear combination of 
the columns of the matrix. We will use this again and again, so you should internalize 
it now! We illustrate with an example: 
Example 13.8. Consider the following product 

5 ⋅ 3 + 5 ⋅ 4[6 ⋅ [3
4] = [6 

4] = 3 [1
6] + 4 [5

1 2] 1 ⋅ 3 + 2 ⋅ 2] 

Notice that the result is a linear combination of the columns of the matrix. 
To express this abstractly we write a matrix as 

⎡ ⎤
⎢ ⎥𝐴 = ⎢v1 v2 v3 v4 v5⎥
⎢ ⎥ 

⎣ ⎦ 

Here each vj is a vector representing a column of 𝐴. We then have 

𝑐1⎡ ⎤ ⎡ ⎤𝑐2⎢ ⎥ ⎢ ⎥
⎢v1 v2 v3 v4 v5⎥ ⋅ ⎢𝑐3⎥ = 𝑐1v1 + 𝑐2v2 + 𝑐3v3 + 𝑐4v4 + 𝑐5v5
⎢ ⎥ ⎢𝑐4⎥ 

⎣ ⎦ ⎣𝑐5⎦ 
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That is, the product is a linear combination of the columns of 𝐴. 
Block matrices and multiplication

0 0 1 0
⎡ ⎤0 0 0 1Consider the following matrix 𝐴 = ⎢ ⎥. We can divide this into blocks ⎢6 5 0 0⎥ 
⎣1 2 0 0⎦ 

0 0 1 0
⎡ 0 0 0 1 ⎥

⎤
= [ 

0 𝐼
0 

]𝐴 = ⎢⎢ 6 5 0 0 ⎥ 𝐵 
⎣ 1 2 0 0 ⎦ 

As long as the sizes of the blocks are compatible, block matrices multiply just like matrices: 

[ 
𝐴 𝐵 [ 

𝐸
𝐹 

] = [ 
𝐴𝐸 + 𝐵𝐹 ⋅𝐶 𝐷 

] 𝐶𝐸 + 𝐷𝐹 
] 

To convince yourself of this look at the following product and see that the blocks in the 
first column on the left only touch the top block on the right etc. 

0 0 1 0 𝑎 𝑏 
⎡ ⎤ ⎡ ⎤0 0 0 1 𝑐 𝑑 ⎢ ⎥ ⋅ ⎢ ⎥⎢ 6 5 0 0 ⎥ ⎢ 𝑒 𝑓 ⎥ 
⎣ 1 2 0 0 ⎦ ⎣ 𝑔 ℎ ⎦ 

13.7.1 Review: matrix notation 

For a matrix 𝐴, we give its size as rows × columns. So a 2 × 3 matrix has 2 rows and 3 
columns. We write 𝐴𝑖,𝑗 for the entry in the 𝑖th row and 𝑗th column. 

3 5Example 13.9. For the 2 × 3 matrix 𝐴 = [1 
11], the 1, 2 entry is 𝐴1,2 = 3. Likewise, 7 9 

the 2, 3 entry is 𝐴2,3 = 11. 

13.7.2 Review: matrix multiplication 

Written out formally the 𝑖, 𝑗-entry of 𝐴𝐵 is given by the dot product of the 𝑖th row of 𝐴 
dotted with the 𝑗th column of 𝐵. That is 

𝑖, 𝑗-entry of 𝐴𝐵 = ⟨𝑖th row of 𝐴⟩ ⋅ ⟨𝑗th column of 𝐵⟩ 

This is illustrated in the following example. 
Example 13.10. In the matrix product below, we’ve put a line through the 3rd row of first 
matrix and the 2nd column of the second matrix. The dot product of this row and column 
is 3, 2-entry of the product, in this case it’s 51. 

3 4 ∗ ∗ 
⎡ ⎤
⎢5 6⎥ ⋅ [6 5 ∗ ∗⎢ ⎥⎢7 8⎥ 1 2] = ⎢

⎡
∗ 51⎥

⎤ 

⎣0 1⎦ ⎣∗ ∗ ⎦ 
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Example 13.11. 
[6 5 [3 ⋅ 3 + 5 ⋅

4
4] = [38

1 2] ⋅ 4] = [1
6

⋅ 3 + 2 ⋅ 11] . 

Only compatibly sized matrices can be multiplied. For matrices 𝐴 and 𝐵: the 
product 𝐴𝐵 only makes sense if the number of columns of 𝐴 equals the number of rows of
𝐵. 
That is, the product 𝐴𝐵 only makes sense if the 𝐴 is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑝 
matrix. The product 𝐴𝐵 is an 𝑚 × 𝑝 matrix. 
Example 13.12. (i) A 4 × 2 times a 2 × 3 gives a 4 × 3 matrix: 

6 5 41 40 38
⎡ ⎤ ⎡ ⎤1 2 5 3 8 9 11⎢ ⎥ ⋅ [6 

4] = ⎢ ⎥⎢7 8⎥ 1 2 ⎢50 51 53⎥ 
⎣0 1⎦ ⎣ 1 2 4 ⎦ 

(ii) A 2 × 2 times a 2 × 3 gives a 2 × 3 matrix: 

5 3 
6
5] = [16 38 60[6

1 2] ⋅ [1
2 4 5 11 17] 

(iii) A 2 × 3 times a 3 × 1 gives a 2 × 1 matrix: 

[1 2 3 ⋅ ⎡
7
8⎤ = [ 50

4 5 6] ⎢ ⎥ 122]
⎣9⎦ 

(iv) A 2 × 2 times a 3 × 2 is not okay. 

[6
1 

5
2] ⋅ ⎡⎢5

3 
6
4
⎤⎥ NOT A VALID EXPRESSION 

⎣7 8⎦ 

Matrix multiplication is NOT commutative. That is, except in rare cases, 𝐴𝐵 ≠ 𝐵𝐴. 
Indeed, sometimes the matrices are only compatible for one order of multiplication. 

5Example 13.13. Let 𝐴 = [6 
2] and 𝐵 = [2

3] then the product 𝐴𝐵 is legitimate, but the 1 
product 𝐵𝐴 does not make sense. 

Even, if the product is legitimate in either order, the products can be different. 
5 2Example 13.14. Let 𝐴 = [6 
2] and 𝐵 = [1 

3] then the following multiplications show 1 0 
that 𝐴𝐵 ≠ 𝐵𝐴 

[6 5 2 27 2 5 9
1 2] [0

1 
3] = [1

6 
8 ] but [0

1 
3] [1

6 
2] = [3

8 
6] 
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Lesson: You need to be careful and precise when doing matrix algebra. Make sure you 
multiply in the correct order. 

2. Identity: The following matrices are called identity matrices: 

1 0 0 01 0 0 ⎡ ⎤
𝐼2 = [1 

1
0] , 𝐼3 = ⎡0 1 0⎤ , 𝐼4 = ⎢0 1 0 0⎥⎢ ⎥0 ⎢0 0 1 0⎥⎣0 0 1⎦ ⎣0 0 0 1⎦ 

They are called the identity for the same reason the scalar 1 is called the multiplicitave 
identity. That is if you multiply the identity times anything you get back that anything. 
For example 

1 0 0 5 5
[1 0

1] [3
4] = [3

4] , ⎡0 1 0⎤ ⎡6⎤ = ⎡6⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥0 
⎣0 0 1⎦ ⎣7⎦ ⎣7⎦ 

Identity matrices are always square matrices. That is they have the same number of rows 
and columns. We use the subscripts in 𝐼2, 𝐼3 etc. to indicate the size of the identity. If the 
size is clear from the context we drop the subscript and just write 𝐼 for the identity matrix. 
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