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14 Row reduction and subspaces 

14.1 Goals 

1. Be able to put a matrix into row reduced echelon form (RREF) using elementary row 
operations. 

2. Know the definitions of null and column space of a matrix. 

3. Be able to use RREF to find bases and describe the null and column spaces of a 
matrix. 

4. Know the definitions of span and independence for vectors. 

5. Know the definitions of basis and dimension for a vector space. 

6. Know that the column space = {b} for which the equation 𝐴x = b has a solution. 

7. Be able to solve 𝐴x = b by superpositioning a particular solution and the general 
homogeneous solution. 

8. Be able to describe the geometric effects transforming vectors using matrix multipli-
cation. 

14.2 Introduction 

Row reduction is a systematic computational method of simplifying a matrix while retaining 
some of its key properties. This will give us a systematic method of solving systems of linear 
equations by finding a particular solution and the general homogeneous solution. 
The computational goal of row reduction is to simplify the matrix to the so called row 
reduced echelon form (RREF). Once in this form, we can easily read off some important 
properties of the original matrix. 
Among these properties are the notions of null space and column space, which are two of the 
fundamental vector subspaces associated to a matrix. In order to discuss these spaces, we 
will need to learn the general concepts of independence of vectors, and basis and dimension 
of a vector space. 
You will see that we have already seen all of these things, using different terms, in 18.03. 
We’ll illustrate with our standard example: The homogenous equation 

𝑥″ + 8𝑥′ + 7𝑥 = 0 

has two independent solutions 𝑥1 = 𝑒−𝑡 and 𝑥2 = 𝑒−7𝑡. Thus the equation has a two 
dimensional vector space of solutions with basis {𝑥1, 𝑥2}. That is, every solution is a linear 
combination 𝑐1𝑥1 + 𝑐2𝑥2 of the two basis functions. We say that the space of homogeneous 
solutions is a two dimensional subspace of the vector space of all functions. 

1 



14 ROW REDUCTION AND SUBSPACES 2 

The last section in this topic will introduce the idea that matrix multiplication can be 
viewed as a transformation or mapping of vectors. At base, this is just the idea that a 
matrix times a vector is another vector. Looked at geometrically, we will see that matrix 
multiplication transforms a square to a parallelogram and a circle to an ellipse. 

14.3 Row reduction 

Row reduction is a computational technique for systematically simplifying a matrix or 
system of equations. It involves stringing together the elementary row operations listed 
below. We will see that it is exactly the same as using elimination to solve a system of 
equations. 
We will explain its use through a series of examples. 
Elementary row operations 

1. Subtract a multiple of one row from another. 

2. Scale a row by a non-zero number. 

3. Swap two rows. 

Example 14.1. Applying row operations to a matrix 𝐴. 

Start with 𝐴 = ⎡⎢2
1 

6
3

⎤⎥. Perform the following row operations. 
⎣4 12⎦ 

Subtract 2⋅Row1 from Row2: ∼ ⎡0
1 

0
3 

⎤ .⎢ ⎥
⎣4 12⎦ 

Subtract 4⋅Row1 from Row3: ∼ ⎡⎢0
1 

0
3
⎤⎥. 

⎣0 0⎦ 

Example 14.2. Use elimination to solve the following system of equations 

𝑥 + 2𝑧 = 4
2𝑥 + 𝑦 + 7𝑧 = 14 
𝑥 + 3𝑧 = 5 

Solution: We use elimination: subtract 2⋅Equation1 from Equation2 and at the same time 
subtract Equation1 from Equation3. 

𝑥 + 2𝑧 = 4
𝑦 + 3𝑧 = 6

𝑧 = 1 

Now solve the system from the bottom up: 𝑧 = 1 ⇒ 𝑦 = 3 ⇒ 𝑥 = 2. 
Let’s redo the previous example writing out just the augmented coefficient matrix 

1 0 2 4
⎡ ⎤⎢2 1 7 14⎥
⎣1 0 3 5 ⎦ 
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Follow the same operations in the example: subtract 2⋅ Row1 from Row2 and subtract Row1 

from Row3. 
1 0 2 4

⎡ ⎤⎢0 1 3 6⎥
⎣0 0 1 1⎦ 

This represents the same system of equations and row operations as in the previous exam-
ple. 

14.4 Echelon Form 

The final matrix in the previous example is in echelon form. By definition, this means the 
first non-zero element in each row is farther to the right than the one in the row above. 
Said differently, below the staircase is all zeros and in the corner of each stair is a nonzero 
number. 
The word echelon seems to have military origins and means a step like arrangement. Here 
are two examples of matrices in echelon form with the staircase shown. The matrix on the 
left is the same as the one just above. 

⎡ 1 

1 

1

2 2 4 5 ⎤
⎢ ⎥⎡ 1 

1 

1

− − −

0 2 4 ⎤
⎥ ⎢ 0 0 6 0 ⎥⎢ ⎢ ⎥⎢ 0 3 6 ⎥ ⎢ ⎥⎢ ⎥ ⎢ 0 0 0 2 ⎥⎢ 

1 
⎥ ⎢ ⎥0 0 ⎦ ⎣ 0 0 0 0 0 ⎦⎣ 

The first non-zero element in each row is called a pivot. They are circled in the matrices 
just above. 

14.4.1 Reduced row echelon form (RREF) 

A matrix is in reduced row echelon form (RREF) if 
1. Each pivot is 1. 
2. Each pivot column is all zeros except for the pivot. 
3. The rows with all zeros are all at the bottom. 

1 2 0 5 
Example 14.3. Use the elementary row operations to put the matrix ⎡⎢2 4 1 13⎤⎥ in 

⎣1 2 1 8 ⎦ 
RREF. 
Solution: Here are the row operations. 𝑅2 means Row 2 etc. The notation 𝑅2 = 𝑅2 −2⋅𝑅1 

means change 𝑅2 by subtracting 2𝑅1 from it (like computer code). 

1 2 0 5 𝑅2 = 𝑅2 − 2𝑅1 1 2 0 5 𝑅3 = 𝑅3 − 𝑅1 1 2 0 5 𝑅3 = 𝑅3 − 𝑅2 1 2
⎡ ⎤ ⎤ ⎤⎢2 4 1 13⎥ −−−−−−−−→ ⎡⎢0 0 1 3⎥ −−−−−−−−→ ⎢⎡0 0 1 3⎥ −−−−−−−−→ 

⎡
⎢ 0 0 

⎣1 2 1 8 ⎦ ⎣1 2 1 8⎦ ⎣0 0 1 3⎦ ⎣ 0 0 

The last matrix is in RREF. Again we rewrite it to emphasize the pivots and the echelon. 

0 5⎤3⎥1
0 0⎦ 
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1 2 0 5 

0 0 1 3 

0 0 0 0 

⎡
⎢
⎢
⎢ 

⎣ 

⎤
⎥
⎥
⎥ 

⎦ 

The pivots of 𝑅 are circled. The columns with pivots are called pivot columns the other 
columns are called free columns. We have 

𝑅 pivot columns: ⎡⎢0
1
⎤⎥ , ⎡⎢1

0
⎤⎥ 𝑅 free columns: ⎡⎢0

2
⎤⎥ , ⎡⎢3

5
⎤⎥

⎣0⎦ ⎣0⎦ ⎣0⎦ ⎣0⎦ 

We use these to name the same columns in 𝐴: 

𝐴 pivot columns: ⎡⎢2
1
⎤⎥ , ⎡⎢1

0
⎤⎥ 𝐴 free columns: ⎡⎢4

2
⎤⎥ , ⎡⎢13

5 
⎤⎥

⎣1⎦ ⎣1⎦ ⎣2⎦ ⎣ 8 ⎦ 

14.4.2 Pivot and free variables 

Recall that matrix multiplication results in a linear combination of columns. Using the 
RREF in Example 14.3 we have 

𝑥12 0 5 ⎡ ⎤ 1 2 0 5⎡ 
1

1
0 

⎤ ⎢𝑥2⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ 0 0 3⎥ = 𝑥1 ⎢0⎥ + 𝑥2 ⎢0⎥ + 𝑥3 ⎢1⎥ + 𝑥4 ⎢3⎥ +⎢𝑥3⎥
⎣ 0 0 0⎦ ⎣𝑥4⎦ 

⎣0⎦ ⎣0⎦ ⎣0⎦ ⎣0⎦ 

𝑥1 and 𝑥3 multiply pivot columns, so they are called pivot variables. 𝑥2 and 𝑥4 multiply 
free columns, so they are called free variables. 

14.5 Column Space of a Matrix 

The column space of a matrix is the set of all linear combinations of the columns. 
To shorten the phrase ’all linear combinations’, we will say it is the span of the columns. 
In general we have the following definition. 
Definition. The span of the vectors v1, … , vn is defined as the set of all linear combinations 
of the vectors. That is, 

The span of v1, … , vn = {𝑐1v1 + 𝑐2v2 + … + 𝑐𝑛vn, where 𝑐1, 𝑐2, … , 𝑐𝑛 are scalars} 

Important but not hard: make sure you understand why the span of vectors is always 
a vector space. 

1 2 0 5 
Example 14.4. Consider 𝑅 = ⎡⎢0 0 1 3⎥⎤ . 

⎣0 0 0 0⎦ 



14 ROW REDUCTION AND SUBSPACES 5 

The column space of 𝑅 is the set of all vectors of the form 

1 2 0 5
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤𝑥1 ⎢0⎥ + 𝑥2 ⎢0⎥ + 𝑥3 ⎢1⎥ + 𝑥4 ⎢3⎥
⎣0⎦ ⎣0⎦ ⎣0⎦ ⎣0⎦ 

Notice that there is some redundancy here: the free columns are clearly linear combinations 
of the pivot columns. That is 

Column2 = 2 ⋅ Column1 

Column4 = 5 ⋅ Column1 + 3 ⋅ Column3 

So the free columns are redundant and the column space is given by the span of just the 
pivot columns: 

⎧ 1 0 ⎫{ ⎡ ⎤ ⎡ ⎤}
Column space of 𝑅 = Col(𝑅) = ⎨𝑥1 ⎢0⎥ + 𝑥3 ⎢1⎥⎬{ }⎩ ⎣0⎦ ⎣0⎦⎭ 

Our conclusion is that the pivot columns of 𝑅 span the column space of 𝑅. 
Example 14.5. In this example, we’ll see that row reduction does not change the relations 
between the columns. So the pivot columns of 𝐴 span the column space of 𝐴. 

1 2 0 5 
The matrix 𝐴 = ⎡⎢2 4 1 13⎥⎤ in Example 14.3 has RREF 

⎣1 2 1 8 ⎦ 

1 2 0 5
𝑅 = ⎡⎢0 0 1 3⎥⎤ . 

⎣0 0 0 0⎦ 

Columns 1 and 3 are the pivot columns of 𝑅. Note that for both 𝐴 and 𝑅 we have the same 
relations between the columns, i.e., row reduction did not change these relations: 

Column2 = 2 ⋅ Column1 

Column4 = 5 ⋅ Column1 + 3 ⋅ Column3 

Therefore, just as with 𝑅, the pivot columns in 𝐴 span its column space. That is, 

⎧ 1 0 ⎫ ⎧ 1 0 ⎫ 
Column space of 𝐴 = span ⎨

{
⎢⎡2⎥⎤ , ⎢⎡1⎥⎤⎬

} = ⎨
{𝑐1 ⎢⎡2⎥⎤ + 𝑐2 ⎢⎡1⎥⎤⎬

} 

{ } { }⎩⎣1⎦ ⎣1⎦⎭ ⎩ ⎣1⎦ ⎣1⎦⎭ 

14.6 Rank, basis, dimension, independence 

This section is going to throw a lot of vocabulary at you. You need to practice it to make 
it second nature. You should try to see how most of the new words capture ideas we have 
been using since the beginning of 18.03 



14 ROW REDUCTION AND SUBSPACES 6 

First up is the notion of independence. In Examples 14.4 and 14.5 we saw that the free 
columns were linear combinations of the pivot columns. This meant they were redundant 
and not needed to generate the column space. We describe this by saying that the free 
columns are dependent on the pivot columns. 
After getting rid of the free columns it is clear that we need all the pivot columns to make 
the column space. We describe this by saying that the pivot columns are an independent 
set of vectors. 
The formal definition of independence is the following: 
Independence. We say that the vectors v1, v2, … , vn are independent if none of them can 
be written as a linear combination of the others 

Solution: (a) Note that 

This shows that any one of these 3 vectors is a linear combination of the other two. For 
example 

0. For Part (b) this is quite obvious since, 

Returning to pivot columns, we have the following vocabulary: 

• The pivot columns are independent. 

• The pivot columns span the column space. 

• We combine independence and span into one word and say the pivot columns are a 
basis for the column space. 

are not independent. 

are independent. 

+ 𝑐3 

𝑐1
𝑐2
𝑐3 

Example 14.6. (a) Show that vectors 

+ 𝑐2𝑐1 

(b) Show that vectors 

has only the trivial solution 𝑐1 

⎢
⎣ 

Thus the three vectors are not independent. 
(b) One standard way to show independence is to show that the equation 

= ⎡ ⎤⎥
⎦ 

0
0
0 

⎤⎥
⎦ 

0
0
0

⎢
⎣ 

= ⎡⎥
⎦ 

7
⎤8

9
⎢
⎣
⎡+⎥

⎦ 

4
⎤5

6 

⎡− 2 ⎢
⎣ 

⎤⎥
⎦ 

1
2
3 

⎡⎢
⎣ 

⎤⎥
⎦ 

7
8
9

⎢
⎣ 

− ⎡⎤⎥
⎦ 

4
5
6

⎢
⎣ 

= 2 ⎡⎤⎥
⎦ 

1
2
3 

⎡⎢
⎣ 

⎤⎥
⎦ 

7
8
9 

⎤⎥
⎦ 

⎡⎢
⎣ 

⎤⎥
⎦ 

0
0
1 

. 

⎡⎢
⎣ 

⎤⎥
⎦ 

, 
4
5
6 

⎡⎢
⎣ 

⎤⎥
⎦

, 

⎤⎥
⎦ 

1
2
3 

⎡⎢
⎣ 

0
1
0 

⎡⎢
⎣ 

⎤⎥
⎦ 

0
0
1 

⎤⎥
⎦

⎡⎢
⎣ 

⎤⎥
⎦ 

1
0
0 

, 

⎡⎢
⎣ 

=𝑐3=𝑐2= 

0
1
0 

⎡⎢
⎣ 

⎤⎥
⎦

, 
1
0
0 

⎡⎢
⎣ 

⎢
⎣ 

summing the left hand side, the equation becomes 

= ⎡
0
0
0 

⎤⎥
⎦ 

⎡⎢
⎣ 
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• The number of pivot columns is called the dimension of the column space. 

• We also call the number of pivots the rank of the matrix. This is the same as the 
dimension of the column space. It is also the same as the number of non-zero rows in 
the reduced row echelon form. 

Let’s restate all our definitions in mathematical terms. 

• Independence: The vectors v1, … , vn are independent if none can be written as a 
linear combination of the others. Equivalently, they are independent if the equation 
(with unknowns 𝑐1, 𝑐2, … , 𝑐𝑛) 

𝑐1v1 + 𝑐2v2 + … + 𝑐𝑛vn = 0 

has only the trivial solution 𝑐1 = 𝑐2 = … = 𝑐𝑛 = 0. 

• Span: The set of all linear combinations of v1, … , vn is called the span of these 
vectors. It is a vector space, i.e., closed under addition and scalar multiplication. 

• Basis: A basis for a vector space is a set of vectors that is both independent and 
spans the vector space. That is, it gets you the entire space with no redundancy. 

• Dimension: The dimension of a vector space is the number of vectors in a basis of 
the space. 

Example 14.7. 
(a) [1

0], [0
1] clearly span R2. Since they are also independent, they form a basis of R2. 

This particular basis is called the standard basis of R2. 

(b) [1
0], [1

0], [1
1] span R2. Since they are not independent, e.g., [1

1] is a linear combination 

of the other two vectors, they do not form a basis of R2. 
(c) Since R2 has a basis with two vectors it has dimension 2. 

(d) [−1
1 ], [1

1] also form a basis of R2. 

To see this we must show that the two vectors are independent and span R2. It is clear 
that they are not multiples of each other so they are independent. To see they span R2 

we need to show that any vector [𝑏1] can be written as a linear combination of our two 𝑏2 
vectors. That is, we must always be able solve 

𝑥1 [−1
1 ] + 𝑥2 [

1
1] = [𝑏

𝑏
1
2
] 

for 𝑥1 and 𝑥2. This is just a matrix equation (linear combination of columns) 

[ 
1 

1
1] [𝑥1] = [𝑏1]−1 𝑥2 𝑏2 

We can easily solve this by elimination or using the matrix inverse. so we have verified that 

[−1
1 ], [1

1] is a basis of R2. 
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14.7 The meaning of the column space 

Consider the matrix equation 

[1 2 3
1] ⎡

𝑥
𝑥

1
2
⎤ = [𝑏1]1 0 ⎢ ⎥ 𝑏2⎣𝑥3⎦ 

An important problem is to find those vectors [𝑏1] for which this equation has a solution.𝑏2 
To answer this, remember that matrix multiplication gives a linear combination of the 
columns. That is, the above matrix equation can be written as 

𝑥1 [
1
1] + 𝑥2 [

2
0] + 𝑥3 [

3
1] = [𝑏

𝑏
2
1] 

We see that the solution to our problem is that the equation has a solution precisely when 

[𝑏1] is in the column space of the coefficient matrix.𝑏2 

14.8 Null Space 

The null space of a matrix 𝐴 is the set of all solutions to the homogeneous equation 

𝐴x = 0 

This is exactly the same as what we have often called the homogeneous solution. Mathe-
maticians also use the term kernel as a synonym for null space. 
Note. If 𝐴 has 𝑛 columns then the null space is a subspace of R𝑛. 
Example 14.8. Find the null space of 

2 1 3𝐴 = [1
2 1 0 2] 

Solution: The answer will take a lot of space to display all the vectors and matrices. 
However, you will see when you work problems on your own that this type of problem does 
not take a long time to work out. 
Also, to make a point, we use the augmented matrix and solve 𝐴x = 0 by bringing the 
augmented matrix to reduced row echelon form. 

𝑅2 = − 1
3 ⋅ 𝑅2𝑅2 = 𝑅2 − 2𝑅1

[1 2 1 3 0 2 1 3 0 2 1 3 0−−−−−−−−→ [1 −−−−−−−−→ [1 
0]2 1 0 2 0] 0 −3 −2 −4 0] 0 1 2/3 4/3 

𝑅1 = 𝑅1 − 2𝑅2 −1/3 1/3 0−−−−−−−−→ [ 
1 

0]2/3 4/3 

The pivots are circled. The first two columns are pivot columns and the last two are free 
columns. This last augmented matrix represents a system of equations 

[1 0 −1/3 1/3 ⎡𝑥
𝑥

2
1⎤ 

= [0⎢ ⎥ 0] . (1)0 1 2/3 4/3] ⎢𝑥3⎥ 
⎣𝑥4⎦ 

0 

0 1 
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We will finish finding the null space by writing these equations out explicitly. (Below, we’ll 
show a more efficient way of presenting the computation.) 

Written out as a system of equations, Equation 1 is 

𝑥1 − 3
1𝑥3 + 

1
3𝑥4 = 0 

𝑥2 + 
2
3𝑥3 + 3

4𝑥4 = 0 (2) 

We can solve for the pivot variables 𝑥1, 𝑥2 in terms of the free variables 𝑥3, 𝑥4: 

1𝑥1 = 3𝑥3 − 
1
3𝑥4 

𝑥2 = −2
3𝑥3 − 

4
3𝑥4 

These equations make it clear that we can set the free variables, 𝑥3, 𝑥4, to any values we 
choose, i.e., they can be set freely. Once they are set, the pivot variables, 𝑥1, 𝑥2, are fully 
determined. 
So let’s set the free variables: 𝑥3 = 𝑎, 𝑥4 = 𝑏. With these choices the solution to our 
equations is 

𝑥1 3
1𝑎 − 1

3𝑏 
⎡𝑥2

⎤ ⎡−3
2𝑎 − 4

3𝑏⎤
⎢ ⎥ = ⎢ ⎥ .⎢𝑥3⎥ ⎢ 𝑎 ⎥ 
⎣𝑥4⎦ ⎣ 𝑏 ⎦ 

This can be written naturally as a linear combination 

𝑥1⎡𝑥2
⎤ 1/3 −1/3⎢ ⎥⎢𝑥3⎥ ⎡2/3⎤ ⎡−4/3⎤ 

⎢ ⎥ = 𝑎 ⎢ ⎥ + 𝑏 ⎢ ⎥ ,𝑥4 ⎢ 1 ⎥ ⎢ 0 ⎥⎢ ⎥⎢𝑥5⎥ ⎣ 0 ⎦ ⎣ 1 ⎦
⎣𝑥6⎦ 

This shows that Null(𝐴) is 2 dimensional with a basis 

⎧ 1/3 −1/3 ⎫
{⎡2/3⎤ ⎡−4/3⎤}⎢ ⎥ , ⎢ ⎥ (3)⎨⎢ 1 ⎥ ⎢ 0 ⎥⎬
{ }⎩⎣ 0 ⎦ ⎣ 1 ⎦⎭ 

Notice that the first basis vector has 𝑥3 = 1, 𝑥4 = 0. Likewise, the second has 𝑥3 = 0, 𝑥4 = 
1. 
In the calculation we just did, 𝑥1, 𝑥2 are pivot variables and 𝑥3, 𝑥4 are free variables. They 
are called free variables because we could choose their values freely. After that, the pivot 
variables’ values were determined by the Equations 2. 
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Now, we will show a somewhat more efficient way to present this. The key is to view matrix 
multiplication as a linear combination of the columns 

[1 0 −1/3 1/3 ⎢
⎡𝑥2⎥

⎤ 
= 𝑥1 [

1
0] + 𝑥2 [

0 
2/3 

] + 𝑥4 [
1/3

0 1 2/3 4/3] ⎢

𝑥

𝑥

1

3⎥ 1] + 𝑥3 [
−1/3 

4/3] = 0 

⎣𝑥4⎦ 

We rewrite this by putting the variables below the columns they multiply: 

1 0 −1/3 1/3[ ]0 1 2/3 4/3
𝑥1 𝑥2 𝑥3 𝑥4 

Then, we find a basis of the null space as follows. 
1. Set one free variable to 1 and the other free variables to 0, i.e., write a 1 below one free 
column and 0s below the other free columns. 
2. By inspection choose the values of the pivot variables that make the linear combination 
of the columns add to 0. Write these values below the pivot columns. 

1 0 −1/3 1/3[ ]0 1 2/3 4/3
𝑥1 𝑥2 𝑥3 𝑥4
1/3 −2/3 1 0

−1/3 −4/3 0 1 

So a basis of Null(𝐴) contains the two vectors 

1/3 −1/3
⎡−2/3⎤ ⎡−4/3⎤ 

= ⎢ ⎥ , v2 = ⎢ ⎥ .v1 ⎢ 1 ⎥ ⎢ 0 ⎥ 
⎣ 0 ⎦ ⎣ 1 ⎦ 

Now we get the null space of 𝐴 (all homogeneous solutions) by taking linear combinations 
of our two basic solutions. 

⎧ 1/3 −1/3 ⎫
{ ⎡−2/3⎤ ⎡−4/3⎤}

Null(𝐴) = {𝑐1v1 + 𝑐2v2} = 𝑐1 ⎢ ⎥ + 𝑐2 ⎢ ⎥⎨ ⎢ 1 ⎥ ⎢ 0 ⎥⎬
{ }⎩ ⎣ 0 ⎦ ⎣ 1 ⎦⎭ 

Of course, this is the same answer we got before. 
Remarks. 1. The dimension of the null space equals the number of free variables. 
2. We didn’t really need to augment the matrix with a column of zeros, since these zeros 
never changed. 
3. For the equation 𝐴x = b, our general approach will be to find a particular solution and 
the general homogeneous solution. Then we’ll use superposition to get the general solution. 
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This should be very familiar based on what we did with constant coefficient homogeneous 
DEs. 
4. There are of course many other bases of the null space, this is the one we are lead to by 
our algorithm. 

Example 14.9. Consider the matrix 

1 2 0 3 0 4
𝑅 = ⎡⎢0 0 1 5 0 6⎥⎤ . 

⎣0 0 0 0 1 7⎦ 

This is in row echelon form. Find its null space two ways. 
(i) Using our algorithm of setting each free variable, in turn, to 1, find a basis of Null(𝑅). 
Write the computation below the matrix. 
(ii) Explicitly write out the 3 equations in 6 unknowns and solve them. 
Finally, note that they produce exactly the same results and convince yourself that they 
are really identical methods. 
Solution: (i) The algorithm to produce a basis of Null(𝑅) says to set, in turn, each free 
variable to 1 while setting the others to 0. We start by writing the variables below their 
respective columns. (This reflects the fact that 𝑅x is a linear combination of the columns 
of 𝑅.) So 𝑅x is represented by 

1 2 0 3 0 4
[ 0 0 1 5 0 6 ]

0 0 0 0 1 7
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 

There are 3 free variables, so the null space has dimension 3. We can compute the basis 
vectors by first setting the free variables and then computing the pivot variables that make 
the linear combination 0. Here is the computation: 

1 2 0 3 0 4 
[ 0 0 1 5 0 6 ]

0 0 0 0 1 7
𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6
−2 1 0 0 0 0
−3 0 −5 1 0 0
−4 0 −6 0 −7 1 

In the first row below the variables, we set 𝑥2 = 1, 𝑥4 = 0, 𝑥6 = 0. Then, by inspection we 
found the values of 𝑥1, 𝑥3, 𝑥5 that made the linear combination of the columns equal 0. In 
this case, the 1 times Column 2 had to be canceled by -2 times Column 1. 
Likewise, in the second row below the variables, we set 𝑥2 = 0, 𝑥4 = 1, 𝑥6 = 0. Then, by 
inspection, we saw that the 3 and 5 in Column 4, had to be canceled by -3 times Column 
1 plus -5 times Column 3. 
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The three rows below the variables represent a basis of Null(𝑅): 

⎧ −2 −3 −4 ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤1 0 0⎢ ⎥ ⎢ ⎥ ⎢ ⎥{⎢ 0 ⎥ ⎢−5⎥ ⎢−6⎥}
⎢ ⎥ , ⎢ ⎥ , ⎢ ⎥ (4)⎨ 0 1 0 ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ 0 ⎥ ⎢ 0 ⎥ ⎢−7⎥{ }⎩⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 1 ⎦⎭ 

(ii) The matrix equation we want to solve is 

𝑥1 0
⎡ ⎤ ⎡ ⎤𝑥2 01 2 0 3 0 4 ⎢ ⎥ ⎢ ⎥

⎤ ⎢𝑥3⎥ ⎢0⎥𝑅x = 0 ⇔ ⎡⎢0 0 1 5 0 6⎥ ⎢ ⎥ = ⎢ ⎥ .𝑥4 0
⎣0 0 0 0 1 7⎦ ⎢ ⎥ ⎢ ⎥⎢𝑥5⎥ ⎢0⎥ 

⎣𝑥6⎦ ⎣0⎦ 

Writing these out explicitly as a system of equations: 

𝑥1 + 2𝑥2 + 3𝑥4 + 4𝑥6 = 0
𝑥3 + 5𝑥4 + + 6𝑥6 = 0

𝑥5 + 7𝑥6 = 0 

Next, solve for the pivot variables 𝑥1, 𝑥3 and 𝑥5 in terms of the free variables 𝑥2, 𝑥4, 𝑥6: 

𝑥1 = −2𝑥2 − 3𝑥4 − 4𝑥6 

𝑥3 = −5𝑥4 − 6𝑥6 

𝑥5 = −7𝑥6 

Set the free variables freely: 𝑥2 = 𝑎, 𝑥4 = 𝑏, 𝑥6 = 𝑐. With these choices, the solution to our 
equation 𝑅x = 0 is 

𝑥1 −2𝑎 − 3𝑏 − 4𝑐 
⎡ ⎤ ⎡ ⎤𝑥2 𝑎 ⎢ ⎥ ⎢ ⎥⎢𝑥3⎥ = ⎢ −5𝑏 − 6𝑐 ⎥ .⎢𝑥4

⎥ ⎢ 𝑏 ⎥⎢ ⎥ ⎢ ⎥⎢𝑥5⎥ ⎢ −7𝑐 ⎥ 
⎣𝑥6⎦ ⎣ 𝑐 ⎦ 

This can be written naturally as a linear combination 

𝑥1 −2 −3 −4
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤𝑥2 1 0 0⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢𝑥3⎥ ⎢ 0 ⎥ ⎢−5⎥ ⎢−6⎥⎢ ⎥ = 𝑎 ⎢ ⎥ + 𝑏 ⎢ ⎥ + 𝑐 ⎢ ⎥ .𝑥4 0 1 0⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢𝑥5⎥ ⎢ 0 ⎥ ⎢ 0 ⎥ ⎢−7⎥ 
⎣𝑥6⎦ ⎣ 0 ⎦ ⎣ 0 ⎦ ⎣ 1 ⎦ 

These vectors are exactly the same as our basis vectors in (4). 
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The two methods produce exactly the same basis because both involve setting the free 
variables freely and then computing the pivot variables. In (i), we started by setting one 
free variable to 1 and the others to 0 to get a basis vector. In (ii), we first found the general 
solution. Then, the basis vectors were found by setting one free variable to 1 and the others 
to 0, e.g., setting 𝑎 = 0, 𝑏 = 1, 𝑐 = 0 gives the second basis vector in (4). 

14.8.1 Connecting the RREF and the original matrix 

The last piece of the puzzle is to connect the null space and column space of a matrix with 
those of its reduced row echelon form. Let’s look again at Example 14.8 and place 𝐴 and 
its RREF one above the other 

2 1 3𝐴 = [1 
2]2 1 0 

0 −1/3 1/3𝑅 = [1
0 1 2/3 4/3] 

Here are the rules. 
1. The null space of 𝐴 is the same as that of 𝑅. 
2. The column space of 𝑅 has a basis given by the pivot columns of 𝑅. The corresponding 
columns in 𝐴 are a basis for the column space of 𝐴. 
Rule 1 follows because row reduction of the augmented matrix does not alter the solutions 
to an equation. 
Rule 2 follows because row reduction does not change the relationships between the columns. 

14.9 Summary of 𝐴x = b 

We are now very good at analyzing the equation 

𝐴x = b 

1. It has a solution if b is in the column space of 𝐴. 

2. We can find a solution by elimination (aka row reduction) 

3. The full solution is x = xp + xh, where xp is any particular solution and xh is the 
general homogeneous solution. That is xh is the null space of 𝐴. 

4. We can use reduced row echelon form (RREF) to find a basis and the dimension of 
both the null space and the column space. 

14.10 Matrix multiplication as a linear transformation 

It can be very useful to think of matrix multiplication as a function. We’ll also say map or 
linear transform. 
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2 1 3Example 14.10. Let 𝐴 = [1 𝐴 is a 2 × 4 matrix so we can multiply it times 2 1 0 2]. 

a 4-vector and get a 2-vector 

[1 2 1 3 ⎢
⎡𝑥

𝑥
2
1

⎥
⎤ 

= [𝑦1] . 2 1 0 2] ⎢𝑥3⎥ 𝑦2
⎣𝑥4⎦ 

This is a function from R4 to R2. We will write 

𝐴 ∶ R4 ⟶ R2 

2 1 3 x ⟼ [1
2 1 0 2] x 

and say 𝐴 maps R4 to R2. (More precisely, multiplication by 𝐴 maps R4 to R2.) This is 
a simple statement, but it is a fruitful way to think about matrix multiplication and will 
help us understand many things. 

14.10.1 Depicting linear transformations with a domain-codomain diagram 

Example 14.11. To visualize the function 𝑓(𝑥) = 3𝑥, we can draw its graph in R2, i.e., 
the line 𝑦 = 3𝑥. 
But there is another way: Draw the domain and codomain (two copies of the real line) and 
show where certain features in the domain get mapped (or transformed) to: 

0 1 2
domain R

0 3 6
codomain R

f

For example, 𝑓(𝑥) = 3𝑥 maps the point 2 to the point 6 and the interval [1, 2] to the interval 
[3, 6]. The diagram shows how 𝑓 expands everything by a factor of 3. 

0Example 14.12. Now consider the matrix [2 
1] and the associated linear transformation 0 

f ∶ R2 ⟶ R2 

[𝑥
𝑦] ⟼ [2 0

1] [𝑥
𝑦] = [2𝑥

𝑦 
] . 0 

Drawing a graph of f would require 4 dimensions (2 for the input and 2 for the output), so 
let’s draw a domain-codomain diagram instead. How does f transform Poonen’s van Gogh 
unit smile? 
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[
2 0
0 1

]

For example, the ear at [−1
0 

] is mapped to [−2
0 

]. Notice how the linear transformation f 
stretches the smiley in the horizontal direction only. 

2Example 14.13. Let 𝐴 = [3 
2]. For a square matrix, we can save space by putting the 1 

domain and codomain in the same plane. For multiplication by 𝐴, we have: 

𝐴 [1
0] = [3

1] and 𝐴 [0
1] = [2

2] 

We say [1
0] is mapped to [1

3] and [0
1] is mapped to [2

2]. The figures below display the input 

vectors in blue and the output vectors in orange. They show that the effect of multiplying 
a vector by 𝐴 is to both rotate and scale the input vector. Geometrically the effect of 
multiplying a square by 𝐴 is a parallelogram. 

1

1

2

2

3

3

[
3 2
1 2

] [
1
0

]
=

[
3
1

]

1

1

2

2

3

3

[
3 2
1 2

] [
0
1

]
=

[
2
2

]

1 2 3 4 5

1

2

3

[
3 2
1 2

]
· square = parallelogram

Matrix multiplication rotates and scales vectors 

As a quick look ahead, we note that most vectors are rotated and scaled, however there are 
some special vectors that are scaled but not rotated: 

2 2[3
1 2] [−1

1 ] = [−1
1 ] and [3

1 2] [2
1] = [4

8] = 4 [2
1] . 
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1 2 3 4 5 6 7 8

1

2

3

4

Special vectors that are not rotated when multiplied by 𝐴. 
We’ll spend a lot time with these special vectors soon. For now let’s note the following 

consequence of linearity: For 𝐴 = [3
1 2

2]. 

𝐴 (𝑐1 [−1
1 ] + 𝑐2 [1

2]) = 𝑐1 [−1
1 ] + 4𝑐2 [1

2] . 

That’s pretty simple! 

Example 14.14. Rotation matrices 

= [cos 𝜃 − sin 𝜃 In this example we’ll show that the matrix 𝑅𝜃 cos 𝜃 
] rotates vectors by an angle sin 𝜃 

𝜃. To see this we take a unit vector at angle 𝛼 and see what multiplication by 𝑅𝜃 does to 
it. 

(cosα, sinα)

(cos(α+ θ), sin(α+ θ))

θ
α

θ

𝑅𝜃 [
cos 𝛼 − sin 𝜃 

sin 𝛼] = [cos 𝜃 cos 𝛼 − sin 𝜃 sin 𝛼 
sin 𝛼] = [cos 𝜃 

cos 𝜃 
] [cos 𝛼 

sin 𝜃 sin 𝜃 cos 𝛼 + cos 𝜃 sin 𝛼] 

= [cos(𝛼 + 𝜃) (trig addition formula!)sin(𝛼 + 𝜃)] 

The result is a unit vector at angle 𝛼 + 𝜃, which is what we claimed would happen. 
𝑅𝜃 is called a rotation matrix. We will also use the name orthogonal matrix. 

The mathlet https://mathlets.org/mathlets/matrix-vector/ illustrates matrix multi-
plication as a mapping of . 

https://mathlets.org/mathlets/matrix-vector/
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