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15 Transpose, inverse, determinant 

15.1 Goals 

1. Know the definition and be able to compute the inverse of any square matrix using 
row operations. 

2. Know the properties of inverses. In particular, that det(𝐴) ≠ 0 is equivalent to the 
existence of 𝐴−1. 

3. Know the definition and be able to compute the determinnant of any square matrix. 

4. Know the properties of determinant. 

5. Know the definition and be able to compute the transpose of any matrix. 

6. Understand how elementary row operations affect the determinant and be able to use 
this to simplify computing determinants. 

7. Know the definition of diagonal and triangular matrices and be able to easily compute 
their determinants and, for diagonal matrices, inverses. 

8. Recall from 18.02 the method of Laplace expansion for computing inverses and deter-
minants. 

15.2 Introduction 

The main point of this topic is to learn how to compute determinants (of square matrices). 
The main application is that the determinant is 0 exactly when the matrix has a nontrivial 
null space. This will be key when we learn about eigenvalues and eigenvectors. 
You learned how to compute determinants in 18.02. We’ll recall the methods learned there 
and add another method based on row reduction. This will simplify the sometimes tedious 
calculations. We will do something similar with inverses. 

15.3 Inverses of square matrices 

You saw matrix inverses in 18.02, so we will assume they are somewhat familiar. 
Definition: A square matrix 𝐴 has an inverse if there is another matrix, denoted 𝐴−1, 
such that 𝐴−1𝐴 = 𝐴𝐴−1 = 𝐼 . 
Property. (𝐴𝐵)−1 = 𝐵−1𝐴−1. 
Proof: It’s easy to check that (𝐵−1𝐴−1)(𝐴𝐵) = 𝐵−1(𝐴−1𝐴)𝐵 = 𝐵−1𝐼𝐵 = 𝐼 . 
Story. If you put on your sweater and then your jacket, to reverse it you have to first 
take off your jacket and then your sweater. 

1 
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Let 𝐴 be an 𝑛 × 𝑛 matrix. Two important questions are 
Q1. Is 𝐴 invertible? That is, does 𝐴 have an inverse? 

Q2. How do you compute 𝐴−1? 

We can often answer Question 1 using the following list of equivalent statements. 

1. 𝐴 has an inverse. 
2. det(𝐴) ≠ 0. 
3. 𝐴 has a trivial null space,i.e., the null space = {0}. 
4. 𝐴 has rank 𝑛 (we say 𝐴 has full rank). 
5. The columns of 𝐴 are independent. 
6. The echelon form of 𝐴 has 𝑛 pivots. 
7. The reduced row echelon form of 𝐴 is the identity. 
8. For every choice of b, the equation 𝐴x = b has a unique solution. That solution is 

x = 𝐴−1b. 

Proofs: We’ll give brief arguments why numbers 2-8 follow from 1. The proof of the 
converses, i.e., that number 1 follows from each of 2-8 are similar. So assume that 𝐴 has 
an inverse 𝐴−1. 
2. We’ll see below (and you saw in 18.02) that in computing 𝐴−1 we divide by det(𝐴). 
Since we can’t divide by 0, we must have det(𝐴) ≠ 0. 
3. Suppose v is in the null space of 𝐴, so 𝐴v = 0. Then, since 𝐴 has an inverse, we know 
v = 𝐴−10 = 0. This shows that the only vector in the null space is 0. 
4. We just showed that 1 implies 𝐴 has a trivial null space. Thus it has no free variables. 
This implies it has 𝑛 pivot variables, i.e., it has rank 𝑛. 
5,6,7. These are just different ways of saying 𝐴 has rank 𝑛. 
8. This is obvious. 

It’s also worth recording these equivalences in inverse form. The following are equivalent 
for 𝐴 

1. 𝐴 does not have an inverse. (We say 𝐴 is singular or non-invertible.) 

2. det(𝐴) = 0. 
3. 𝐴 has a nontrivial null space,i.e., the null space contains non-zero vectors. 
4. 𝐴 has rank less than 𝑛. 
5. The columns of 𝐴 have some dependencies 

6. The echelon form of 𝐴 has fewer than 𝑛 pivots. 
7. The RREF of 𝐴 has some all 0 rows 

8. For every choice of b, the equation 𝐴x = b has either no solutions or infinitely many 
solutions. 
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15.3.1 Matlab 

Matlab makes it easy to compute the inverse of a matrix 𝐴. The function inv(A) returns
𝐴−1. For example, to solve 𝐴x = b in Matlab you would give the command: x = inv(A)∗b. 

15.3.2 Computing inverses. 

There are a number of methods for computing the inverse of a matrix. First we remind you 
of the inverse of a 2 by 2 matrix: 

−1 

[𝑎 𝑏 1 −𝑏 =𝑐 𝑑] 𝑎𝑑 − 𝑏𝑐 
[−𝑐

𝑑 
𝑎 

] 

In words, swap the main diagonal elements, change the sign (without swapping) of the off 
diagonal elements, and divide by the determinant. You should memorize this. We will use 
it often and you won’t want to waste time deducing it in each case. 
Next, we will show how to find and inverse using elimination. A few examples will illustrate 
how to do this. The reason it works is straightforward, but we will relegate the explanation 
to an optional appendix at the end of these notes. 

Example 15.1. Find the inverse of 𝐴 = [6 5
1 2]. 

Solution: We augment 𝐴 by the identity and then use row reduction to bring the left-hand 
side to the identity. 

swap 𝑅1 and 𝑅2 𝑅2 = 𝑅2 − 6 ⋅ 𝑅1

[6 5 1 0 2 0 1 2 0 1−−−−−−−−→ [1 −−−−−−−−→ [1
1 2 0 1] 6 5 1 0] 0 −7 1 −6] 

𝑅2 = (−1/7) ⋅ 𝑅2 𝑅1 = 𝑅1 − 2 ⋅ 𝑅20 1 0 2/7 −5/7−−−−−−−−→ [1
0 

2
1 

−−−−−−−−→ [1
−1/7 6/7] 0 1 −1/7 6/7 

] 

The right half of the last augmented matrix is the inverse 

−1 

[6 5 = [ 
2/7 −5/7

1 2] −1/7 6/7 
] 

1 5 4 
Example 15.2. Find the inverse of 𝐴 = ⎡⎢2 1 3⎥⎤ 

⎣0 0 1⎦ 

Solution: We augment 𝐴 by the identity and use row reduction as in the previous example. 

𝑅1 = 𝑅1 − 4 ⋅ 𝑅31 5 4 1 −5 111 0 0 𝑅2 = 𝑅2 − 3 ⋅ 𝑅3 1 5 0 1 0 −4 𝑅1 = 𝑅1 − 5 ⋅ 𝑅2 −9 0 0
⎡ ⎤⎢2 1 3 0 1 0⎥⎤ −−−−−−−−→ ⎢⎡2 1 0 0 1 −3⎤⎥ −−−−−−−−→ ⎡⎢ 2 1 0 0 1 −3⎥
⎣0 0 1 0 0 1⎦ ⎣0 0 1 0 0 1 ⎦ ⎣ 0 0 1 0 0 1 ⎦ 

−1/9 5/9 −11/9 𝑅2 = 𝑅2 − 2 ⋅ 𝑅1 1 0 0 −1/9 5/9 −11/9𝑅1 = (−1/9) ⋅ 𝑅1 1 0 0 
⎤−−−−−−−−→ ⎡⎢2 1 0 0 1 −3 ⎤⎥ −−−−−−−−→ ⎢⎡0 1 0 2/9 −1/9 −5/9 ⎥

⎣0 0 1 0 0 1 ⎦ ⎣0 0 1 0 0 1 ⎦ 
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−1 5 −111 ⎡ ⎤So, 𝐴−1 = ⎢ 2 −1 −5 ⎥, as you can easily verify.9 ⎣ 0 0 9 ⎦ 

Example 15.3. Let’s see what happens if we try this on a matrix that doesn’t have an
1 2 3 

inverse. Try to find the inverse of 𝐴 = ⎡⎢4 5 6⎥⎤: 
⎣7 8 9⎦ 

𝑅2 = 𝑅2 − 4 ⋅ 𝑅11 2 3 1 0 01 0 0 𝑅3 = 𝑅3 − 7 ⋅ 𝑅1 1 2 3 1 0 0 𝑅3 = 𝑅3 − 2 ⋅ 𝑅2 1 2 3
⎡ ⎤⎢4 5 6 0 1 0⎤⎥ −−−−−−−−→ ⎡⎢0 −3 −6 −4 1 0⎤⎥ −−−−−−−−→ ⎡⎢0 −3 −6 −4 1 0⎥
⎣7 8 9 0 0 1⎦ ⎣0 −6 −12 −7 0 1⎦ ⎣0 0 0 1 −2 1⎦ 

We’ve reached an impasse. The matrix 𝐴 only has 2 pivots, so it cannot be row reduced to 
the identity, i.e., it has no inverse. 
Question: What is the det(𝐴)? 

15.3.3 Diagonal and triangular matrices 

It is simple to find the inverse of a diagonal matrix. Here are some examples. 
−1

−1 1 0 0 1 0 0
[3 0 = [1/3 0 ⎡ ⎤ ⎤0 2 0 = ⎡0 1/2 00 5] 0 1/5] ⎢ ⎥ ⎢ ⎥

⎣0 0 3⎦ ⎣0 0 1/3⎦ 

−1𝑎 0 0 0 𝑎−1 0 0 0
⎡0 𝑏 0 0⎤ ⎡ 0 𝑏−1 0 0 ⎤
⎢ ⎥ = ⎢ ⎥⎢0 0 𝑐 0⎥ ⎢ 0 0 𝑐−1 0 ⎥ 
⎣0 0 0 𝑑⎦ ⎣ 0 0 0 𝑑−1⎦ 

Triangular matrices require more work, but at least we only have to do elimination in one 
direction. 

1 0 0 
Example 15.4. Find the inverse of 𝐴 = ⎡⎢2 3 0⎥⎤ 

⎣4 5 6⎦ 

Solution: We augment and row reduce from the top down: 

𝑅2 = 𝑅2 − 2 ⋅ 𝑅11 0 0 1 0 01 0 0 𝑅3 = 𝑅3 − 4 ⋅ 𝑅1 1 0 0 1 0 0 𝑅2 = (1/3) ⋅ 𝑅2 1 0 0
⎡ ⎤ ⎤ ⎤⎢2 3 0 0 1 0⎥ −−−−−−−−→ ⎢⎡0 3 0 −2 1 0⎥ −−−−−−−−→ ⎢⎡0 1 0 −2/3 1/3 0⎥
⎣4 5 6 0 0 1⎦ ⎣0 5 6 −4 0 1⎦ ⎣0 5 6 −4 0 1⎦ 

1 0 0𝑅3 = 𝑅3 − 5 ⋅ 𝑅2 1 0 0 1 0 0 𝑅3 = (1/6) ⋅ 𝑅3 1 0 0 
⎤−−−−−−−−→ ⎡⎢0 1 0 −2/3 1/3 0⎤⎥ −−−−−−−−→ ⎢⎡0 1 0 −2/3 1/3 0 ⎥

⎣0 0 6 −2/3 −5/3 1⎦ ⎣0 0 1 −1/9 −5/18 1/6⎦ 

1 0 0 
So, 𝐴−1 = ⎡⎢−2/3 1/3 0 ⎥⎤ . 

⎣−1/9 −5/18 1/6⎦ 
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15.3.4 Laplace expansion using cofactors 

In 18.02 you learned how to find the inverse using cofactors (also called the adjoint method). 
For completeness, we review this method in the appendix at the end of these notes. Unless 
we specify a method for finding an inverse, e.g., by row reduction, you may use any method 
you want, including Laplace expansion. 

15.4 Determinants 

We can take the determinant of a square matrix 𝐴. We will write det(𝐴) or |𝐴| for the 
determinant of 𝐴. Since this is part of 18.02, we will assume you have seen determinants 
before. For us, the most important use of determinants is to check if a matrix has a trivial 
null space. These were Properties 2 and 3 in Section 15.3: 

Null(𝐴) is trivial if and only if det(𝐴) ≠ 0. 
Null(𝐴) is nontrivial if and only if det(𝐴) = 0. 

Properties of determinants: 
1. The determinant is linear in each column and linear in each row. 
2. det(𝐼) = 1. 
3. Swapping rows changes the sign of the determinant. 
4. Scaling a row scales the determinant. 
5. Adding a multiple of one row to another doesn’t change the determinant. 
6. det(𝐴𝐵) = det(𝐴) det(𝐵). 

15.4.1 Laplace expansion using minors 

In 18.02 you learned how to find the determinant using minors. We give a review of that 
method in the appendix at the end of the notes for this topic. Unless we specify a method 
for finding the determinant, e.g., by row reduction, you may use any method you want 
including Laplace expansion. 

15.4.2 The 2 by 2 case 

You should know the determinant of a 2 × 2 matrix 

𝑏 det [𝑎 
𝑑] = 𝑎𝑑 − 𝑏𝑐. 𝑐 
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15.4.3 Easy determinants 

The easiest determinants to compute are for diagonal and triangular matrices. In these 
cases the determinant is just the product of the diagonal entries. 

𝑎 0 0 0
⎡ ⎤0 𝑏 0 0Diagonal: det ⎢ ⎥ = 𝑎𝑏𝑐𝑑.⎢0 0 𝑐 0⎥ 
⎣0 0 0 𝑑⎦ 

𝑎 𝑒 𝑓 𝑔 
⎡ ⎤0 𝑏 ℎ 𝑖 Upper triangular: det ⎢ ⎥ = 𝑎𝑏𝑐𝑑 ⎢0 0 𝑐 𝑗⎥ 
⎣0 0 0 𝑑⎦ 

𝑎 0 0 0
⎡ ⎤𝑏 𝑐 0 0Lower triangular: det ⎢ ⎥ = 𝑎𝑐𝑓𝑗.⎢𝑑 𝑒 𝑓 0⎥ 
⎣𝑔 ℎ 𝑖 𝑗⎦ 

Identical rows: If 𝐴 has two identical rows then det 𝐴 = 0. 
Proof: Swapping the rows leaves 𝐴 and therefore, det(𝐴) unchanged. But (property 3), 
it also changes the sign of the determinant. Only 0 stays the same when you change sign. 
Therefore, det(𝐴) = 0. 

15.4.4 Matlab 

Matlab makes it easy to compute the determinant of a matrix 𝐴. The function det(A) 
returns det(𝐴). 

15.4.5 Finding the determinant using row reduction 

Since we know how the elementary row operations affect the determinant we can use row 
reduction to compute the determinant of a matrix. We’ll illustrate with an example. 

0 4 1 
Example 15.5. Find the determinant of 𝐴 = ⎡⎢1 2 2⎥⎤ 

⎣3 1 2⎦ 

Solution: We use row reduction until 𝐴 is in triangular form. At each step we keep track 
of the effect on the determinant. 

0 4 1 swap rows; det ×(−1) 1 2 2 𝑅3 = 𝑅3 − 3 ⋅ 𝑅1; det unchanged 1 2 2
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢1 2 2⎥ −−−−−−−−→ ⎢0 4 1⎥ −−−−−−−−→ ⎢0 4 1 ⎥
⎣3 1 2⎦ ⎣3 1 2⎦ ⎣0 −5 −4⎦ 

𝑅2 = (1/4) ⋅ 𝑅2; det ×(1/4) 1 2 2 𝑅3 = 𝑅3 + 5 ⋅ 𝑅2; det unchanged 1 2 2
⎡ ⎤ ⎡ ⎤−−−−−−−−→ ⎢0 1 1/4⎥ −−−−−−−−→ ⎢0 1 1/4 ⎥
⎣0 −5 −4⎦ ⎣0 0 −11/4⎦ 
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The last matrix is triangular, so its determinant is the product of its diagonal entries, i.e., 
−11/4. Following the changes in the determinant caused by the row operations, we have 

1 2 2 −11(−1) ⋅ (4
1) det(𝐴) = det ⎡0 1 1/4 ⎤ = ⇒ det(𝐴) = 11.⎢ ⎥ 4⎣0 0 −11/4⎦ 

15.5 Transpose 

For us, the transpose will be a convenient tool for calculation and presenting matrices. For 
example, in Matlab we can use the transpose and matrix multiplication to compute dot 
(inner) products. There is a lot more to transposes than we will see. You should take 18.06 
to learn more. 
To take the transpose of a matrix you change rows into columns. We’ll use the notation 
𝐴𝑇 for the transpose of 𝐴. 

1 2 3 5Example 15.6. If 𝐴 = ⎡⎢3 4⎥⎤ then 𝐴𝑇 = [1 
6].2 4

⎣5 6⎦ 

Note. Transpose turns a 3 × 2 matrix into a 2 × 3 matrix. In general, it turns an 𝑛 × 𝑚 
matrix into an 𝑚 × 𝑛 matrix. 
In terms of entries, the 𝑖, 𝑗 entry of 𝐴𝑇 equals the 𝑗, 𝑖 entry of 𝐴. In symbols: (𝐴𝑇 )𝑖,𝑗 = 𝐴𝑗,𝑖. 

You can check that the dimensions make sense: If 𝐴 is 𝑚 × 𝑛 and 𝐵 is 𝑛 × 𝑝 then 𝐴𝐵 is
𝑚 × 𝑝, so (𝐴𝐵)𝑇 is 𝑝 × 𝑚. Likewise, we can show that 𝐵𝑇 𝐴𝑇 is 𝑝 × 𝑚. 
Of course we can prove this property, but in 18.03 we are not particularly concerned with 
the proof, so, for anyone who is interested, we’ll put it in the appendix at the end of the 
notes for this topic. 
Symmetric matrices. A square matrix 𝐴 is symmetric if 𝐴 = 𝐴𝑇 . 
Example 15.7. The following matrices are symmetric 

1 2 3 𝑎 𝑏 𝑐 𝑎 0 03[2 
5] ⎡⎢2 4 5⎤⎥ 

⎡⎢𝑏 𝑑 𝑒⎤⎥ 
⎡⎢0 𝑏 0⎤⎥ .3 

⎣3 5 6⎦ ⎣𝑐 𝑒 𝑓⎦ ⎣0 0 𝑐⎦ 

Notes: 1. Symmetric means symmetric around the main diagonal. 
2. Diagonal matrices are always symmetric. 
3. It doesn’t make sense to ask if a non-square matrix is symmetric. 
4. Matlab uses a prime to mean transpose, e.g., [1,2; 3,4; 5,6] ′ . 
Symmetric matrices are an extremely important class of matrices, which arise in many 
applications. Unfortunately, we won’t have time to do much with them in 18.03. 
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15.5.1 Inner products and transposes 

In 18.02 you learned about the dot product of two vectors, e.g., 

(1, 2, 3) ⋅ (2, −1, 4) = 2 − 2 + 12 = 12. 

Since the dot is also used for multiplication, we are going to (mostly) quit using the dot 
notation and also rename the dot product as the inner product. Here is our new terminology 
and notation. 
Definition: The inner product of two vectors v and w is denoted ⟨v, w⟩. If v and w are 
column vectors in R3 then 

𝑣1 𝑤1
⟨v, w⟩ = ⟨⎡⎢𝑣2

⎤⎥ , ⎡⎢𝑤2
⎤⎥⟩ = 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3. 

⎣𝑣3⎦ ⎣𝑤3⎦ 

This is not restricted to vectors in R3, we can define the inner product between vectors in 
R𝑛 for any 𝑛. 
The inner product of two column vectors can be computed as a matrix multiplication using 
the transpose. 

𝑤1
⟨v, w⟩ = v𝑇 w = [𝑣1 𝑣2 𝑣3] ⎡⎢𝑤2⎥⎤ = 𝑣1𝑤1 + 𝑣2𝑤2 + 𝑣3𝑤3. 

⎣𝑤3⎦ 

We will not do very much with inner product for now, though it will come up again later. 
For now, the most important thing to remember is that two vectors are orthogonal if their 
inner product is 0. 

⟨v, w⟩ = 0 ⇔ v and w are orthogonal. 

15.5.2 Saving space 

Now that we have the transpose, we can use it to save space on the page. Instead of always 
writing column vectors vertically, we can use the transpose to write them horizontally, e.g., 

1
⎡ ⎤
⎢2⎥ 5]𝑇 
⎢3⎥ = [1 2 3 4
⎢4⎥ 

⎣5⎦ 

15.6 Appendix 

This appendix contains some review and some more technical material. The technical 
material is just for your reading pleasure. You will not be asked to reproduce it for ES.1803. 
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15.6.1 Review: Determinants by Laplace expansion along a row or column 

The 𝑖, 𝑗 minor of a matrix is the determinant after removing the 𝑖th row and 𝑗th column, 
i.e., the row and column intersecting at the 𝑖, 𝑗 entry. 

1 2 3 
Example 15.8. Let 𝐴 = ⎡⎢4 5 6⎥⎤ . Find all the minors that go with the second column. 

⎣7 8 9⎦ 

Solution: The second column has the (1,2), (2,2) and (3,2) entries. The (1,2) minor is the 
2 × 2 determinant of the matrix after crossing out the row and columns through the (1,2) 
entry 

1 2 3 4 6(1,2) minor = ∣4 5 6∣ = ∣ ∣ = −67 97 8 9 

Likewise, for the other two entries in the second column. 

1 2 3 1 2 31 3 1 3(2,2) minor = ∣4 5 6∣ = ∣ ∣ = −12, (3,2) minor = ∣4 5 6∣ = ∣ ∣ = −67 9 4 67 8 9 7 8 9 

We can compute the determinant of the 𝑛 × 𝑛 matrix 𝐴 by expanding along any row or 
column. 

det 𝐴 = sum along the row of (checkerboard sign) ⋅ (entry) ⋅ (minor) 

As a formula, expanding along the 𝑖th row we have 

𝑛 

det 𝐴 = ∑(−1)𝑖+𝑗 ⋅ 𝐴𝑖,𝑗 ⋅ (𝑖, 𝑗) minor. 
𝑗=1 

To expand along a column, you fix 𝑗 and sum over 𝑖. 

1 2 3 
Example 15.9. Expand ∣4 5 6∣ along the middle column. 

7 8 9 

Solution: (Long, drawn out version.) First we draw a line through the second column: 
1 2 3

⎡ ⎤⎢4 5 6⎥
⎣7 8 9⎦ 

+ − +
⎡ ⎤Now we use the sign checkerboard ⎢− + −⎥ to compute the determinant using the 

⎣+ − +⎦ 
entries and minors along the second column. 
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(1,2)minor
1 2 3 ⏞4 6 1 3 1 3∣4 5 −26∣ = ∣ ∣ +5 ∣ ∣ − 8 ∣ ∣ = −2(−6) + 5(−12) − 8(−6) = 07 9 7 9 4 67 8 9 

(1,2) matrix entry 
(1,2) checkerboard sign 

Here, the sign in front of each term comes from the checkerboard, e.g., the (1,2) checkerboard 
entry is a minus sign, so that term gets a minus sign. 
The same process works expanding along any row or column. 

1 2 3 
Example 15.10. Compute ∣4 5 6∣ along the top row 

7 8 9 

5 6 4 6 4 5Solution: (Short, concise version.) Determinant = 1 ⋅ ∣ ∣ − 2 ⋅ ∣ ∣ + 3 ∣ ∣ = 08 9 7 9 7 8 

1 2 3 
Example 15.11. Compute ∣5 0 7∣

8 0 9 

5 7Solution: Use second column: det = −2 ⋅ ∣ ∣+0 ⋅ ∗−0 ⋅ ∗ = 22. (To save time, we didn’t 8 9 
bother computing the minors that were multiplied by 0.) 

15.6.2 Using row reduction on the augmented matrix to find the inverse 

Here we will explain why this technique works. The key fact here is that every elementary 
row operation corresponds to multiplication by a matrix on the left. We illustrate by row 
reducing our favorite matrix to the identity. 

5Original matrix: 𝐴 = [6 
2]1 

[0 1 5 2Swapping 𝑅1 and 𝑅3: 0] [6 
2] = [1 

5]1 1 6 

[ 1 0 2 2𝑅2 = 𝑅2 − 6𝑅1 ∶ −6 1] [1
6 5] = [1

0 −7] 

0 2 2𝑅2 = (−1/7) ⋅ 𝑅2 ∶ [1
0 −1/7] [0

1 
−7] = [0

1 
1] 

𝑅1 = 𝑅1 − 2 ⋅ 𝑅2 [1 −2
1 ] [1 

1
2] = [1 

1
0]0 0 0 

If you put all the matrix multiplications together we get 

−2 0 0 1 5 0[1
0 1 

] [1
0 −1/7] [−6

1 
1] [0

1 0] [6
1 2] = [1

0 1] 

That is 
−1−2 0 0 1 5[1

0 1 
] [1

0 −1/7] [−6
1 

1] [0
1 0] = [6

1 2] 
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This product is exactly what we get by applying the same sequence of elementary row 
operations to the identity matrix on the right side of the augmented matrix (𝐴|𝐼). 

15.6.3 Finding inverses using cofactors (the Laplace or adjoint method) 

We have a simple formula for finding the inverse of a 2 × 2 matrix: 
−1 

[𝑎 𝑏 1 −𝑏 = 𝑎 
] . 𝑐 𝑑] 𝑎𝑑 − 𝑏𝑐 

[−𝑐
𝑑 

For bigger (square) matrices finding inverses is more involved. One algorithm for doing this 
is called the adjoint or Laplace method. 
The step-by-step algorithm is the following: 

1. Start with 𝐴. 

2. Find the matrix of minors. 

3. Find the matrix of cofactors. 

4. Find the adjoint. 

5. Divide by det(𝐴). 

Of course, we have to explain what each of these things is. We will over the next four 
examples, explaining one item at a time. 

1 2 3 
For these examples let 𝐴 = ⎡⎢4 5 6⎤⎥. 

⎣1 2 0⎦ 

Matrix of minors. We definied the 𝑖, 𝑗 minor of a matrix in Section 15.6.1. The matrix 
of minors of 𝐴 is just the matrix made up of all the minors. The 𝑖, 𝑗-entry of the matrix of 
minors is the 𝑖, 𝑗-minor of 𝐴. 

Example 15.12. Find the matrix of minors of 𝐴. 
Solution: 𝐴 is a 3 × 3 matrix so its matrix of minors is also 3 × 3. Here is the computation 
for each minor: 

1 2 3 −12 ∗ ∗ 
⎤ 5 6 ⎡ ⎤⎡1, 1 minor: ⎢4 5 6⎥; 1, 1-minor = ∣ ∣ = −12; matrix of minors = ⎢ ∗ ∗ ∗⎥2 0

⎣1 2 0⎦ ⎣ ∗ ∗ ∗⎦ 

1 2 3 −12 −6 ∗ 
⎤ 4 6 ⎡ ⎤⎡1, 2 minor: ⎢4 5 6⎥; 1, 2-minor = ∣ ∣ = −6; matrix of minors = ⎢ ∗ ∗ ∗⎥1 0

⎣1 2 0⎦ ⎣ ∗ ∗ ∗⎦ 

1 2 3 −12 −6 3
⎡ ⎤ 4 5 ⎡ ⎤1, 3 minor: ⎢4 5 6⎥; 1, 3-minor = ∣ ∣ = 3; matrix of minors = ⎢ ∗ ∗ ∗⎥1 2
⎣1 2 0⎦ ⎣ ∗ ∗ ∗⎦ 
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1 2 3 −12 −6 3
⎤ 2 3 ⎡ ⎤⎡2, 1 minor: ⎢4 5 6⎥; 2, 1-minor = ∣ ∣ = −6; matrix of minors = ⎢ −6 ∗ ∗⎥2 0

⎣1 2 0⎦ ⎣ ∗ ∗ ∗⎦ 

There are 5 more minors to compute. We show each of them, but without labels. You 
should practice by naming them and computing their value. 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢4 5 6⎥; ⎢4 5 6⎥; ⎢4 5 6⎥; ⎢4 5 6⎥; ⎢4 5 6⎥;
⎣1 2 0⎦ ⎣1 2 0⎦ ⎣1 2 0⎦ ⎣1 2 0⎦ ⎣1 2 0⎦ 

−12 −6 3
⎡ ⎤The entire matrix of minors is therefore: ⎢ −6 −3 0 ⎥. 
⎣ −3 −6 −3⎦ 

Matrix of cofactors. Recall the checkerboard of signs we used for computing the deter-
+ − + 

minant: ⎡⎢− + −⎥⎤ . To compute the matrix of cofactors of 𝐴, you change the signs in 

⎣+ − +⎦ 
the matrix of minors according to the checkerboard. 

Example 15.13. Find the matrix of cofactors for the matrix 𝐴 in the previous example. 
−12 −6 3 −12 6

⎤Solution: The matrix of minors is ⎢⎡ −6 −3 0 ⎥ So the matrix of cofactors is ⎢⎡ 6 −3 

⎣ −3 −6 −3⎦ ⎣ −3 6 
(Look carefully at how we changed signs to go from minors to cofactors.) 

Adjoint. To make the adjoint matrix you take the transpose of the cofactors matrix, i.e., 
switch the rows and columns of the cofactors matrix. 

Example 15.14. Find the adjoint matrix for the matrix 𝐴 in the previous examples. 
−12 6 3 −12 6 −3 

Solution: The matrix of cofactors is ⎡⎢ 6 −3 0 ⎤⎥. So the adjoint is ⎡⎢ 6 −3 6 ⎤⎥. 
⎣ −3 6 −3⎦ ⎣ 3 0 −3⎦ 

Example 15.15. Find the inverse for the matrix 𝐴 in the previous examples. 
Solution: We can find det 𝐴 = 9 using the minors for the first row computed in Example 

−12 6 −3 
15.12. The matrix of cofactors is ⎡⎢ 6 −3 6 ⎤⎥, so the inverse is 

⎣ 3 0 −3⎦ 

−12 6 −31 ⎡ ⎤𝐴−1 = ⎢ 6 −3 6 ⎥ .9 ⎣ 3 0 −3⎦ 

Finding the inverse. Divide the matrix of cofactors by det 𝐴. 
The next example will show a good way to organize the computation. 

3 
⎤0 ⎥.

−3⎦ 
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1 2 3 
Example 15.16. Compute the inverse of the matrix 𝐴 = ⎡⎢2 1 2⎥⎤ . 

⎣1 2 0⎦ 

Solution: In order to have an inverse we need det(𝐴) ≠ 0. So our first step is to compute 
the determinant. We do this by expansion along the first row: 

1 2 3 1 2 2 2 2 1det(𝐴) = ∣2 1 2∣ = 1 ∣ ∣ − 2 ∣ ∣ + 3 ∣ ∣ = 1(−4) − 2(−2) + 3(3) = 9.2 0 1 0 1 21 2 0 

Since det(𝐴) ≠ 0, the inverse exists and we can proceed with the algorithm to compute
𝐴−1. Only the first step requires any real computation. 
The algorithm says to first compute the matrix of minors. Notice that we found the minors 
for the first row when we computed the determinant. We can reuse those and only need to 
compute the other 6. (Actually we’ll just use the answers from the previous examples.) 

−4 −2 3
⎡ ⎤1. Matrix of minors = ⎢−6 −3 0 ⎥ (compute each minor). 
⎣ 1 −4 −3⎦ 

−4 2 3
⎡ ⎤2. Matrix of cofactors = ⎢ 6 −3 0 ⎥ (apply checkerboard). 
⎣ 1 4 −3⎦ 

−4 6 1
⎡ ⎤3. Adjoint = ⎢ 2 −3 4 ⎥ (swap rows and columns). 
⎣ 3 0 −3⎦ 

4. Inverse: 
−4 6 1

𝐴−1 = 1 ⎡ ⎤2 −3 49 ⎢ ⎥
⎣ 3 0 −3⎦ 

(divide by det(𝐴). 

We can check this by multiplying by multiplying 𝐴−1 ⋅ 𝐴 and seeing that we get 𝐼 . (You’ll 
have to do the actual computation.) 

−4 6 1 1 2 3
𝐴−1 1 ⎡ ⎤ ⎡ ⎤⋅ 𝐴 = ⎢ 2 −3 4 ⎥ ⎢2 1 2⎥ = 𝐼. 9 ⎣ 3 0 −3⎦ ⎣1 2 0⎦ 

Fun note: This algorithm works for the 2 × 2 case as well. You should try it out, it’s very 
fast. 

15.6.4 Proof that (𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇 

We’ll use the following notation involving indices. Let the (𝑖, 𝑗) entry of 𝐴 be 𝐴𝑖,𝑗. By the 
definition of transpose we have (𝐴𝑇 )𝑗,𝑖 = 𝐴𝑖,𝑗. Likewise for other matrices. In order to 
show that (𝐴𝐵)𝑇 = 𝐵𝑇 𝐴𝑇 we have to show that ((𝐴𝐵)𝑇 )𝑘,𝑖 = (𝐵𝑇 𝐴𝑇 )𝑘,𝑖. We do this by 
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keeping track of indices while multiplying matrices. Since (𝐴𝐵)𝑖,𝑘 = ∑ 
𝑗 

𝐴𝑖,𝑗𝐵𝑗,𝑘 we have 

((𝐴𝐵)𝑇 )𝑘,𝑖 = (𝐴𝐵)𝑖,𝑘 = ∑ 𝐴𝑖,𝑗𝐵𝑗,𝑘 = ∑ 𝐵𝑗,𝑘𝐴𝑖,𝑗 = ∑(𝐵𝑇 )𝑘,𝑗(𝐴𝑇 )𝑗,𝑖 = (𝐵𝑇 𝐴𝑇 )𝑘,𝑖 QED 
𝑗 𝑗 𝑗 

15.6.5 Left and right inverses 

A left inverse for a matrix 𝐴 is a matrix 𝐿 such that left-multiplication by 𝐿 gives the 
identity, e.g., 

𝐿 ⋅ 𝐴 = 𝐼 

The definition of a right inverse is similar. 

Non-square matrices can have one-sided inverses. For example the matrix 𝐴 = [6 5 2
1 2 4] 

has a right inverse (in fact many of them). For example, 

2/7 −5/75 2 0[6
1 2 4] ⎡⎢−1/7 6/7 ⎤⎥ = [1

0 1]
⎣ 0 0 ⎦ 

But 𝐴 has no left inverse. Likewise, there are matrices with left inverses but no right 
inverses. 
Here are some facts about these one-sided inverses. We won’t give details, but you do have 
all the tools to understand the details: ask if you’re interested. 

1. A square matrix either has a single two-sided inverse, i.e., both a left and a right 
inverse, or it has no inverses of any kind. 

2. If 𝑛 < 𝑚 then an 𝑛 × 𝑚 matrix 𝐴 cannot have a left inverse. If the rank of 𝐴 is 𝑛 then 
it has a right inverse. The example just above, illustrates this for 𝐴 a 2 × 3 matrix of 
rank 2. 

3. If 𝑛 > 𝑚 then an 𝑛 × 𝑚 matrix 𝐴 cannot have a right inverse. If the rank of 𝐴 is 𝑚 
then it has a left inverse. 
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