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Jeremy Orloff 

16 Eigenvalues, diagonalization, decoupling 

This note covers topics that will take us several classes to get through. While we we will 
look at 𝑛 × 𝑛 matrices, most of our computational examples will use 2 × 2 matrices. These 
have almost all the features of bigger square matrices and they are computationally much 
easier. 

16.1 Etymology: 

This is from a Wikipedia discussion page: The word eigen in German or Dutch translates 
as ’inherent’, ’characteristic’, ’private’. So an eigenvector of a matrix is characteristic or 
inherent to the matrix. The word eigen is also translated as ’own’ with the same sense as 
the meanings above. That is the eigenvector of a matrix is the matrix’s ’own vector’. 
In English you sometimes see eigenvalues called special or characteristic values. 

16.2 Definition 

For a square matrix 𝑀 , an eigenvalue is a number (scalar) � that satisfies the equation 

𝑀 v = 𝜆 v for some non-zero vector v. (1) 

The vector v is called a non-zero eigenvector corresponding to 𝜆. We will call Equation 
16.1 the eigenvector equation. 
Comments: 
1. Using the symbol 𝜆 for the eigenvalue is a fairly common practice when looking at generic 
matrices. If the eigenvalue has a physical interpretation, we’ll often use a corresponding 
letter. For example, in population matrices the eigenvalues are growth rates, so we’ll often 
denote them using 𝑟 or 𝑘. 
2. Eigenvectors are not unique. That is, if v is an eigenvector with eigenvalue 𝜆 then so is 
any multiple of v. Indeed, the set of all eigenvectors with eigenvalue 𝜆 is clearly a vector 
space. (You should convince yourself of this!) 

16.3 Why eigenvectors are special 

[6 5Example 16.1. Let 𝐴 = 2]. We will explore how 𝐴 transforms vectors and what 1 
makes an eigenvector special. We will see that 𝐴 scales and rotates most vectors, but only 
scales eigenvectors. That is, eigenvectors lie on lines that are unmoved by 𝐴. 

Take u1 = [1
0] ⇒ 𝐴u1 = [1

6]; Take u2 = [0
1] ⇒ 𝐴u2 = [2

5]. 

We see that 𝐴 scales and turns most vectors. 

1 
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= [35Now take v1 = [1
5] ⇒ 𝐴v1 7 ] = 7v1. By the definition in Equation 1, this shows that 

v1 is an eigenvector with eigenvalue 7. The eigenvector is special since 𝐴 scales it by 7, but 
does not rotate it. 

Likewise, v2 = [−1
1 ] then 𝐴v2 = v2. So v2 is an eigenvector with eigenvalue 1. The 

eigenvector v2 is really special, it is unmoved by 𝐴. 
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Example 16.1: Action of the matrix 𝐴 on vectors 

The following example shows how knowing eigenvalues and eigenvectors simplifies calcu-
lations with a matrix. In fact, you don’t even need the matrix once you know all of its 
eigenvalues and eigenvectors. 

Example 16.2. Suppose 𝐴 is a 2 × 2 matrix that has eigenvectors [1
2] and [3

1] with 

eigenvalues 2 and 4 respectively. 

(a) Compute 𝐴 [1
2]. 

Solution: Since [1
2] is an eigenvector, this follows directly from the definition of eigenvec-

tors: 𝐴 [1
2] = 2 [1

2] = [2
4]. 

(b) Compute 𝐴 ([1
2] + [1

3]). 

Solution: This uses the definition of eigenvector plus linearity: 

𝐴 ([1
2] + [1

3]) = 𝐴 [2
1] + 𝐴 [1

3] = 2 [2
1] + 4 [3

1] = [16
6 ] . 

(c) Compute 𝐴 (3 [1
2] + 5 [1

3]). 
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Solution: Again this uses the definition of eigenvector plus linearity: 

3] = [26𝐴 (3 [1
2] + 5 [3

1]) = 3𝐴 [1
2] + 5𝐴 [3

1] = 6 [1
2] + 20 [1 

72] . 

(d) Compute 𝐴 [0
1]. 

Solution: We first decompose [0
1] into eigenvectors: 

[0
1] = [1

3] − [1
2] . 

Now we can once again use the definition of eigenvector plus linearity: 

𝐴 [0
1] = 𝐴 ([3

1] − [1
2]) = 𝐴 [3

1] − 𝐴 [1
2] = 4 [3

1] + 2 [1
2] = [8

2] . 

Example 16.3. Any rotation in three dimensions is around some axis. The vector along 
this axis is fixed by the rotation, i.e., it is an eigenvector with eigenvalue 1. 

16.4 Computational algorithm 

We start by summarizing the method. We will justify it and give examples below. 
Computational method: 
1. The eigenvalues of 𝐴 are the roots of the characteristic equation 

det(𝐴 − 𝜆𝐼) = 0 (2) 

2. The corresponding eigenspace of 𝐴 is Null(𝐴 − 𝜆𝐼). 
Notes. 1. Again, we call Equation 2 the characteristic equation. (Eigenvalues are some-
times called characteristic values.) It allows us to find the eigenvalues and eigenvectors 
separately in a two step process. 
2. The eigenspace is so-called, because it is the vector subspace which consists of all eigen-
vectors corresponding to 𝜆. 
3. Notation: For simplicity we will sometimes use the notation |𝐴| = det(𝐴). So the 
characteristic equation can be written |𝐴 − 𝜆𝐼| = 0. 

16.4.1 Justification of the computational algorithm 

First we recall the following basic fact about square matrices from Topic 15. 
Fact: The null space of 𝐴 is nontrivial exactly when det(𝐴) = 0. 
Next, we manipulate the eigenvalue equation (Equation 1) so that finding eigenvectors 
becomes finding null vectors. Suppose, 𝜆 is an eigenvalue and v is a corresponding nonzero 
eigenvector. Then, starting with the eigenequation we have: 

𝐴 v = 𝜆 v ⇔ 𝐴 v = 𝜆 𝐼v ⇔ 𝐴 v − 𝜆 𝐼v = 0 ⇔ (𝐴 − 𝜆 𝐼)v = 0. 



16 EIGENVALUES, DIAGONALIZATION, DECOUPLING 4 

Since v ≠ 0, the last equation just above says 𝐴 − 𝜆 𝐼 has a nontrivial null space. So 
our fact about determinants and null spaces tells us that 𝜆 is an eigenvalue if and only if 
det(𝐴 − 𝜆 𝐼) = 0, i.e., if and only if 𝜆 is a root of the characteristic equation. This justifies 
Step 1 in the algorithm. 
Likewise, the equation (𝐴 − 𝜆 𝐼)v = 0 says that v is an eigenvector corresponding to 𝜆 if 
and only if v is in Null(𝐴 − 𝜆𝐼). This justifies Step 2 in the algorithm. 

16.4.2 Examples 

5Example 16.4. Find the eigenvalues of the matrix 𝐴 = [6 
2] . For each eigenvalue find 1 

a basis of the corresponding eigenspace. 
Solution: Step 1. Find the eigenvalues 𝜆: |𝐴 − 𝜆𝐼| = 0 (characteristic equation) 

5 
𝜆
0] = [6 − 𝜆 5𝐴 − 𝜆𝐼 = [6

1 2] − [𝜆
0 1 2 − 𝜆] . 

Taking the determinant and setting it to 0 gives 

det(𝐴 − 𝜆𝐼) = (6 − 𝜆)(2 − 𝜆) − 5 = 𝜆2 − 8𝜆 + 7 = 0. 

The roots of this are 𝜆 = 7, 1. 
Step 2. For each eigenvalue, find basis vectors for the eigenspace, i.e., find a basis of 
Null(𝐴 − 𝜆𝐼). 

[−1 5 −5𝜆1 = 7: 𝐴 − 𝜆𝐼 = This has RREF 𝑅 = [1 
0 ] . The null space is 11 −5]. 0 

dimensional, a basis is v1 = [5
1]. 

5 1𝜆1 = 1: 𝐴 − 𝜆𝐼 = [5 
1]. This has RREF 𝑅 = [1 

0] . The null space is 1 dimensional, 1 0 

= [−1 a basis is v2 1 ]. 

Remember, any scalar multiple of these eigenvectors is also an eigenvector with the same 
eigenvalue. 
Let’s reemphasize a key point: 
Example 16.5. Eigenspaces are null spaces. Consider the matrix 

4 8 −2 2
⎡ ⎤0 0 0 0𝐴 = ⎢ ⎥⎢0 0 1 1⎥ 
⎣0 0 1 1⎦ 

Find the eigenvalues and eigenspaces of 𝐴. 
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Solution: This is a 4 × 4 matrix, but the characteristic equation is not hard to find. 

4 − 𝜆 8 −2 2∣ ∣0 −𝜆 0 0|𝐴 − 𝜆 𝐼| = ∣ ∣ = (4 − 𝜆)(−𝜆)(𝜆2 − 2𝜆) = −𝜆2(4 − 𝜆)(𝜆 − 2).
∣ 0 0 1 − 𝜆 1 ∣
∣ 0 0 1 1 − 𝜆∣ 

So the eigenvalues are 𝜆 = 0, 0, 4, 2. 
Eigenspace for 𝜆 = 0: 

1 2 0 1
⎡ ⎤0 0 1 1We must find Null(𝐴): The RREF of 𝐴 is 𝑅 = ⎢ ⎥ .⎢0 0 0 0⎥ 
⎣0 0 0 0⎦ 

Using this we see that Null(𝐴) (eigenspace for 𝜆 = 0) is 2 dimensional and has basis 

⎧ −2 −1 ⎫
{⎡ 1 ⎤ ⎡ 0 ⎤}⎢ ⎥ , ⎢ ⎥⎨⎢ 0 ⎥ ⎢−1⎥⎬
{ }⎩⎣ 0 ⎦ ⎣ 1 ⎦⎭ 

Let’s highlight that Null(𝐴) is nontrivial means 𝜆 = 0 is an eigenvalue. 
For the other two eigenvalues we must find Null(𝐴 − 4𝐼) and Null(𝐴 − 2𝐼). This is not hard 
and you should do it as an exercise. We get: 

⎧ 1 ⎫ ⎧ 0 ⎫
{⎡0⎤} {⎡0⎤}

The eigenspace for 𝜆 = 4 has basis ⎢ ⎥ . The eigenspace for 𝜆 = 2 has basis ⎢ ⎥ .⎨⎢0⎥⎬ ⎨⎢1⎥⎬
{ } { }⎩⎣0⎦⎭ ⎩⎣1⎦⎭ 

Notes. 
Trick. In the 2 × 2 case we don’t have to write out the RREF to find the eigenvector. 
Notice that the entries in our eigenvectors come from the entries in one row of the matrix. 
The eigenvector is the column vector with entries: right entry of the row, minus the left

5 entry. For example, if 𝐴 − 𝜆 𝐼 = [−1 
−5], then, using the top row, we see that v = [5

1] is1 
a basis vector for Null(𝐴 − 𝜆 𝐼). If you think about this a moment, you’ll see why it must 
be the case. 
Matlab: In Matlab the function eig(A) returns the eigenvectors and eigenvalues of a 
matrix. 

16.5 Complex eigenvalues 

If the eigenvalues are complex, then the eigenvectors are complex. Otherwise there is no 
difference in the algebra. 

4Example 16.6. Find the eigenvalues and basic eigenvectors of the matrix 𝐴 = [ 
3 

3] .−4 
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Solution: Step 1. Find the eigenvalues 𝜆: |𝐴 − 𝜆𝐼| = 0 (characteristic equation) 

4 0 3 − 𝜆 4det ([ 
3 

3] − [𝜆 
𝜆]) = ∣ ∣ = (3 − 𝜆)2 + 16 = 0.−4 0 −4 3 − 𝜆 

So the eigenvalues are 𝜆 = 3 ± 4𝑖. 
Step 2. Find corresponding basic eigenvectors. That is, find a basis of Null(𝐴 − 𝜆𝐼). (In 
the 2 × 2 case, we can do that without doing row reduction.) 

v1 = [1𝜆1 = 3 + 4𝑖: (𝐴 − 𝜆 𝐼) = [−4𝑖 4 Take −4 −4𝑖]. 𝑖] . 

4 v2 = [ 1𝜆2 = 3 − 4𝑖: (𝐴 − 𝜆 𝐼) = [ 4𝑖 
4𝑖] . Take −4 −𝑖] . 

Time saver: Notice that the eigenvalues and eigenvectors come in complex conjugate pairs. 
Knowing this, there is no need to do a computation to find the second member of each pair. 

−4Example 16.7. Find the eigenvalues and basic eigenvectors of the matrix 𝐴 = [1 
5 

] . 5 

Solution: Step 1. Find 𝜆 (eigenvalues): |𝐴 − 𝜆𝐼| = 0 (characteristic equation) 

1 − 𝜆 −4∣ ∣ = 𝜆2 − 6𝜆 + 25 = 0 ⇒ 𝜆 = 3 ± 4𝑖. 5 5 − 𝜆 

Step 2. Find corresponding basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 
4𝜆1 = 3 + 4𝑖: (𝐴 − 𝜆 𝐼) = [−2 − 4𝑖 −4 Take v1 = [5 2 − 4𝑖]. −2 − 4𝑖] . 

4𝜆2 = 3 − 4𝑖: Take v2 = v1 = [−2 + 4𝑖] . 

16.6 Repeated eigenvalues 

When a matrix has repeated eigenvalues the eigenvectors are not as well behaved as when 
the eigenvalues are distinct. There are two main examples 

Example 16.8. (Defective case) Find the eigenvalues and basic eigenvectors of the matrix 
1𝐴 = [3 
3] . 0 

Solution: Step 1. Find the eigenvalues 𝜆: |𝐴 − 𝜆𝐼| = 0 (characteristic equation) 

3 − 𝜆 1∣ ∣ = (𝜆 − 3)2 = 0 ⇒ 𝜆 = 3, 3. 0 3 − 𝜆 

Step 2. Find the basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 
1𝜆1 = 3: [0 
0] v1. This is already in RREF. It has one free variable, so the null space 0 

v1 = [1
0] .is 1 dimensional. We can take a basis vector: 
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We have two eigenvalues but only one independent eigenvector, so we call this case defective 
or incomplete. In linear algebra, there is a lot to explore with defective matrices. In 18.03, 
we will not go into a lot of detail about them. 

Example 16.9. (Complete case) Find the eigenvalues and basic eigenvectors of the matrix 
0𝐴 = [3 
3] . 0 

Solution: Step 1. Find the eigenvalues 𝜆: |𝐴 − 𝜆𝐼| = 0 (characteristic equation) 

3 − 𝜆 0∣ ∣ = (𝜆 − 3)2 = 0 ⇒ 𝜆 = 3, 3. 0 3 − 𝜆 

Step 2. Find corresponding basic eigenvectors (basis of Null(𝐴 − 𝜆𝐼)): 
0𝜆1 = 3: 𝐴 − 𝜆𝐼 = [0 
0].0 

This equation shows that every vector in R2 is an eigenvector. That is, the eigenvalue 𝜆 = 3 
has a two dimensional eigenspace. We can pick any two independent vectors as a basis, e.g., 

v1 = [0
1] and v2 = [1

0]. (These are the simplest choices, but any two independent vectors 

would work!) 

Because we have as many independent eigenvectors as eigenvalues, we call this case com-
plete. 

16.7 Diagonal matrices 

In this section we will see how easy it is to work with diagonal matrices. In later sections 
we will see how working with eigenvalues and eigenvectors of a matrix is like turning it into 
a diagonal matrix. 

Example 16.10. Consider the diagonal matrix 𝐵 = [2 0
0 3] 

𝑣] = [2𝑢 Convince yourself that 𝐵 [𝑢 That is 𝐵 scales the first coordinate by 2 and the 3𝑣]. 

second coordinate by 3. 
We can write this as 

𝐵 [1
0] = 2 [0

1] and 𝐵 [0
1] = 3 [1

0] 

This is exactly the definition of eigenvectors. That is, [1
0] and [0

1] are eigenvectors with 

eigenvalues 2 and 3 respectively. We state this an an important fact. 
Important fact. For a diagonal matrix, the diagonal entries are the eigenvalues and the 
eigenvectors are the standard basis vectors. 

2 0 0
⎡ ⎤Example 16.11. The matrix 𝐴 = ⎢0 3 0⎥ has eigenvalues and corresponding basic 

⎣0 0 4⎦ 
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eigenvectors 
𝜆 = 2, 3, 4 

v = ⎢⎡0
1
⎥⎤ , ⎢⎡1

0
⎥⎤ , ⎢⎡0

0
⎥⎤ 

⎣0⎦ ⎣0⎦ ⎣1⎦ 

You can check this by multiplying 𝐴 times each eigenvector. 

Example 16.12. For the matrix 𝐴 in the previous example, compute det 𝐴, 𝐴2, 𝐴5. 
Solution: det(𝐴) = product of diagonal entries = 24. 

22 0 0 25 0 0
𝐴2 = ⎡⎢ 0 32 0 ⎤⎥. Likewise, 𝐴5 = ⎢⎡ 0 35 0 ⎤⎥

⎣ 0 0 42⎦ ⎣ 0 0 45⎦ 

16.8 Diagonalization 

Diagonalization is a way to make a matrix almost as easy to work with as a diagonal matrix. 
Theorem. Diagonalization theorem. Suppose the 𝑛 × 𝑛 matrix 𝐴 has 𝑛 independent 
eigenvectors. Then, we can write 

𝐴 = 𝑆Λ𝑆−1, 
where 𝑆 is a matrix whose columns are the 𝑛 independent eigenvectors and Λ is the diagonal 
matrix whose diagonal entries are the corresponding eigenvalues. 
The proof is below. We illustrate this first with our standard example. 

[6 5Example 16.13. We know the matrix 𝐴 = 2] has eigenvalues 7 and 1 with corre-1 

sponding basic eigenvectors v1 = [5 1]𝑇 and v2 = [−1 1]𝑇 

We put the eigenvectors as the columns of a matrix 𝑆 and the eigenvalues as the entries of 
a diagonal matrix Λ. 

−1 0𝑆 = [v1 v2] = [5 
1 

] , Λ = [7 
1]1 0 

The diagonalization theorem says that 

= [5 −1 
1
0] [ 

1/6 1/6𝐴 = 𝑆Λ𝑆−1 

1 1 
] [7

0 −1/6 5/6] . 

This is called the diagonalization of 𝐴. Note the form: a diagonal matrix Λ surrounded by 
𝑆 and 𝑆−1. 

Proof of the diagonalization theorem. We will do this for the matrix in the example 
above. It should be clear that this proof carries over to any 𝑛×𝑛 matrix with 𝑛 independent 
eigenvectors. 
The equation 𝐴 = 𝑆Λ𝑆−1 can be rewritten as 𝐴𝑆 = 𝑆Λ. We will show this is true by 
showing that both sides have the same effect when multiplying any vector. That is, 

𝐴𝑆v = 𝑆Λv 



16 EIGENVALUES, DIAGONALIZATION, DECOUPLING 9 

for any vector v 

First, let e1 = [0
1] , e2 = [0

1] be the standard basis vectors of R2. Since every vector is a 

linear combination of the basis vectors, it is enough to show 

𝐴𝑆e1 = 𝑆Λe1 and 𝐴𝑆e2 = 𝑆Λe2. 

Recall that multiplying a matrix times a column vector results in a linear combination of 
the columns. In our case, 

𝑆e1 = [v1 v2] [1
0] = v1, and 𝑆e2 = [v1 v2] [0

1] = v2. 

Now we can check that 𝐴𝑆e1 = 𝑆Λe1: 

0𝐴𝑆e1 = 𝐴v1 = 7v1 and 𝑆Λe1 = 𝑆 [7 
1] [1

0] = 𝑆 [7
0] = 7v1.0 

The equation 𝐴v1 = 7v1 follows because v1 is an eigenvector of 𝐴 with eigenvalue 7. 
Thus we have shown that 𝐴𝑆e1 = 𝑆Λe1. In exactly the same way, we can show that
𝐴𝑆e2 = 𝑆Λe2. 
Thus we can conclude that 𝐴𝑆 = 𝑆Λ. So, 𝐴 = 𝑆Λ𝑆−1. 

In general, the steps for diagonalizing an 𝑛 × 𝑛 matrix 𝐴 are: 
1. Find the eigenvalues 𝜆1, … , 𝜆𝑛 and corresponding basic eigenvectors v1, … , vn. 
2. Make the matrix of eigenvectors 𝑆 = [v1 v2 ⋯ vn] 

𝜆1 0 0 ⋯ 0
⎡ ⎤0 𝜆2 0 ⋯ 03. Make the diagonal matrix of eigenvalues Λ = ⎢ ⎥⎢ ⋮ ⋮ ⋮ ⋱ 0 ⎥ 
⎣ 0 0 0 ⋯ 𝜆𝑛⎦ 

The diagonalization is: 𝐴 = 𝑆Λ𝑆−1. 
Note: Diagonalization requires that 𝐴 have a full complement of eigenvectors. If 𝐴 is 
defective, it can’t be diagonalized. 

We have the following important formula 

det(A) = product of its eigenvalues. 

This follows easily from the diagonalization formula 

det(𝐴) = det(𝑆Λ𝑆−1) = det(𝑆) det(Λ) det(𝑆−1) = det(Λ) = product of diagonal entries. 

−1−1 0 −1Example 16.14. Consider the matrix 𝐴 = [5 
1 

] [7 
1] [5 

1 
] .1 0 1 

(a) What are the eigenvalues and eigenvectors of 𝐴. 
(b) Compute det 𝐴, 𝐴2, 𝐴5. 
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−1 0Solution: For ease of writing, let 𝑆 = [5 
1 ] and Λ = [7 

1]. So, 𝐴 = 𝑆Λ𝑆−1.1 0 

(a) The columns of 𝑆 are eigenvectors and the diagonal entries of Λ are the corresponding 
eigenvalues. We have eigenpairs 

𝜆 = 7, v = [5
1] and 𝜆 = 1, v = [−1

1 
] . 

(b) We have det 𝐴 = det Λ = 7. We also have 

𝐴2 = 𝑆Λ𝑆−1 ⋅ 𝑆Λ𝑆−1 = 𝑆Λ2𝑆−1 = 𝑆 [7
0
2 

1
0
2] 𝑆−1. 

0Likewise 𝐴5 = 𝑆Λ5𝑆−1 = 𝑆 [75 

15] 𝑆−1.0 

16.9 Diagonal matrices and uncoupled algebraic systems 

Example 16.15. (An uncoupled algebraic system) Consider the system 

7𝑢 = 1
𝑣 = 3 

The variables 𝑢 and 𝑣 are uncoupled. That is, they never occur in the same equation. We 
can solve the system by finding each variable separately: 𝑢 = 1/7, 𝑣 = 3. 

Example 16.16. Now consider the system 

6𝑥 + 5𝑦 = 2 

𝑥 + 2𝑦 = 4. 

In matrix form this is 

[6 5
2] [𝑥 (3)1 𝑦] = [2

4] 

The matrix 𝐴 = [6
1 2

5] is the same matrix as in Examples 16.1 and 16.4 above. In this 

system the variables 𝑥 and 𝑦 are coupled. We will explain the logic of decoupling later. 
For this example, we will decouple the equations using some magical choices involving 
eigenvectors. 

The examples above showed that the eigenvalues of 𝐴 are 7 and 1 with eigenvectors [5
1] and 

[−1
1 ]. We write all vectors in terms of the eigenvectors by making the change of variables 

[𝑥
𝑦] = 𝑢 [5

1] + 𝑣 [−1
1 

] ⇔ 𝑥 = 5𝑢 − 𝑣; 𝑦 = 𝑢 + 𝑣. 

For the future, we note: [2
4] = [5

1] + 3 [−1
1 

]. 
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Converting our equation from 𝑥 and 𝑦 to 𝑢 and 𝑣 we get 

[6 5 5
1 2] [𝑥

𝑦] = [6
1 2] (𝑢 [1

5] + 𝑣 [−1
1 

]) = 7𝑢 [1
5] + 𝑣 [−1

1 
] 

Thus, 

[6
1 

5
2] [𝑥

𝑦] = [2
4] ⇔ 7𝑢 [5

1] + 𝑣 [−1
1 

] = [5
1] + 3 [−1

1 
] 

It is easy to see that the last system is the same as the equations 

7𝑢 = 1 𝑣 = 3. 

In 𝑢, 𝑣 coordinates the system is diagonal and easy to solve. 

16.10 Introduction to matrix methods for solving systems of DEs 

In this section we will solve linear, homogeneous, constant coefficient systems of differential 
equations using the matrix methods we have developed. For now we will just consider 
matrices with real, distinct eigenvalues. In the next topic we will look at complex and 
repeated eigenvalues. 
As with constant coefficient DEs, we will use the method of optimism to discover a sys-
tematic technique for solving systems of DEs. We start by giving the general 2 × 2 linear, 
homogeneous, constant coefficient system of DEs. It has the form 

𝑥′ = 𝑎𝑥 + 𝑏𝑦 (4)𝑦′ = 𝑐𝑥 + 𝑑𝑦. 
Here 𝑎, 𝑏, 𝑐, 𝑑 are constants and 𝑥(𝑡), 𝑦(𝑡) are the unknown functions we need to solve for. 
There are a number of important things to note. 
1. We can write Equation 4 in matrix form 

[𝑥
𝑦′

′
] = [𝑎 

𝑑
𝑏] [𝑥

𝑦] ⇔ x ′ = 𝐴x (5)𝑐 

𝑏 where 𝐴 = [𝑎
𝑐 𝑑] and x = [𝑥

𝑦]. 

2. The system is homogeneous. You can see this by taking Equation 4 and putting all the 
𝑥 and 𝑦 on the left side so that the right side becomes all zeros. 
3. The system is linear. You should be able to check directly that a linear combination of 
solutions to Equation 5 is also a solution. 
We illustrate the method of optimism for solving Equation 5 with an example. 
Example 16.17. Solve the linear, homogeneous, constant coefficient system 

x = [𝑥 5 x ′ = 𝐴x, where 𝑦] and 𝐴 = [6
1 2] . 

Solution: Using the method of optimism we try a solution 

x = 𝑒𝜆𝑡v, 
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where 𝜆 is a constant and v is a constant vector. Substituting the trial solution into both 
sides of the DE we get 

𝜆𝑒𝜆𝑡v = 𝑒𝜆𝑡𝐴v ⇔ 𝐴v = 𝜆v. 

This is none other than the eigenvalue/eigenvector equation. So solving the system amounts 
to finding eigenvalues and eigenvectors. From our previous examples we know the eigenval-
ues and eigenvectors of 𝐴. We get two solutions. 

x1 = 𝑒𝑡 [−1
1 

] , x2 = 𝑒7𝑡 [1
5] . 

The general solution is the span of these solutions: 

x = 𝑐1x1 + 𝑐2x2 = 𝑐1𝑒𝑡 [−1
1 

] + 𝑐2𝑒7𝑡 [5
1] 

The solutions x1 and x2 are called modal or basic solutions. 
Now that we know where the method of optimism leads, we can do a second example 
starting directly with finding eigenvalues and eigenvectors 

Example 16.18. Find the general solution to the system 

[𝑥′ 4
𝑦′] = [3

1 3] [𝑥
𝑦] 

Solution: First find eigenvalues and basic eigenvectors. 
3 − 𝜆 4Characteristic equation: ∣ ∣ = 𝜆2 − 6𝜆 + 5 = 0 ⇒ 𝜆 = 1, 5.1 3 − 𝜆 

Basic eigenvectors: (basis of Null(𝐴 − 𝜆𝐼)): 
4𝜆 = 1: (𝐴 − 𝜆𝐼) = [2 
2]. Take v1 = [−2

1 
].1 

4𝜆 = 5: (𝐴 − 𝜆𝐼) = [−2 
−]. Take v2 = [2

1].1 

We have two modal solutions: x1 = 𝑒𝑡v1 and x2 = 𝑒5𝑡v2. 

The general solution is x = 𝑐1x1 + 𝑐2x2 = 𝑐1𝑒𝑡 [−2
1 

] + 𝑐2𝑒5𝑡 [1
2] . 

16.11 Decoupling systems of DEs 

Example 16.19. (An uncoupled system) Consider the system 

𝑢′(𝑡) = 7𝑢(𝑡) 

𝑣′(𝑡) = 𝑣(𝑡) 

Since 𝑢 and 𝑣 don’t have any effect on each other, we say that 𝑢 and 𝑣 are uncoupled. It’s 
easy to see the solution to this system is 

𝑢(𝑡) = 𝑐1𝑒7𝑡 

𝑣(𝑡) = 𝑐2𝑒𝑡 
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In matrix form we have 

[𝑢′ 0
1] [𝑢

𝑣] . 𝑣′] = [7
0 

The coefficient matrix has eigenvalues 7 and 1, with basic eigenvectors [1
0] and [0

1]. The 

general solution to the system of DEs is 

[𝑢
𝑣] = 𝑐1𝑒7𝑡 [1

0] + 𝑐2𝑒𝑡 [0
1] . 

We see an uncoupled system has a diagonal coefficient matrix and the basic eigenvectors 
are the standard basis vectors. All in all, it’s simple and easy to work with. 
The following example shows how to decouple a coupled system. After seeing this example, 
we will redo it, in a cleaner, more memorable way. 
Example 16.20. Consider once again the system from Example 16.17 

𝑥′ = 6𝑥 + 5𝑦 x = [𝑥 5⇔ x ′ = 𝐴x, where 𝑦] , 𝐴 = [6 
2] (6)𝑦′ = 𝑥 + 2𝑦. 1 

In this system the variables 𝑥 and 𝑦 are coupled. Make a change of variable that converts 
this to a decoupled system. 
Solution: From Example 16.17 we know the eigenvalues are 7 and 1, basic eigenvectors 

are [5
1] and [−1

1 
], and the general solution is [𝑥

𝑦] = 𝑐1𝑒7𝑡 [5
1] + 𝑐2𝑒𝑡 [−1

1 
]. 

Notice that 𝑐1𝑒7𝑡 and 𝑐2𝑒𝑡 in the above solution are just 𝑢 and 𝑣 from the previous example. 
So we can write 

[𝑥(𝑡)
𝑦(𝑡)] = 𝑢(𝑡) [5

1] + 𝑣(𝑡) [−1
1 

] . (7) 

This is a change of variables. 
Let’s rewrite the system in Equation 6 in terms of 𝑢, 𝑣. Using Equation 7, we get 

x ′ = [𝑥′ 

𝑦′] = 𝑢′ [5
1] + 𝑣′ [−1

1 
] and 𝐴 [𝑥

𝑦] = 𝐴 (𝑢 [5
1] + 𝑣 [−1

1 
]) = 7𝑢 [1

5] + 𝑣 [−1
1 

] 

The last equality follows because [5 1]𝑇 and [−1 1]𝑇 are eigenvectors of 𝐴. 
Equating the two sides we get 

𝑢′ [5
1] + 𝑣′ [−1

1 
] = 7𝑢 [5

1] + 𝑣 [−1
1 

] . 

Comparing the coefficients of the eigenvectors we get 

𝑢′ = 7𝑢 0
𝑣′ = 𝑣 

⇔ [𝑢
𝑣′

′
] = [7

0 1] [𝑢
𝑣] 

That is, in terms of 𝑢 and 𝑣 the system is uncoupled. Note that the eigenvalues of 𝐴 are 
precisely the diagonal entries of the uncoupled system. 
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16.11.1 Decoupling in general 

Though it’s somewhat disguised, the key to the previous example was diagonalization. 
Bringing this to the forefront makes the example cleaner and less complicated. 
Suppose 𝐴 is written in diagonalized form: 𝐴 = 𝑆Λ𝑆−1, where, as usual, 𝑆 is a matrix 
with the eigenvectors of 𝐴 as columns and Λ is the diagonal matrix with the corresponding 
eigenvalues as entries. 
Decoupling: Suppose we have the system x ′ = 𝐴x, then the change of variables 

u = 𝑆−1x 

converts the coupled system into an uncoupled system u ′ = Λu. 
Proof. The key is diagonalization: the system x ′ = 𝐴x can be written 

x ′ = 𝑆Λ𝑆−1x ⇔ 𝑆−1x ′ = Λ𝑆−1x. 

Now, letting u = 𝑆−1x converts this to the uncoupled system 

u ′ = Λu. 

Since this is an uncoupled equation, making the change of variables u = 𝑆−1x is called 
decoupling the system. 

To end this section, we’ll walk through the previous example, being more explicit about the 
use of diagonalization. 
Example 16.21. Decouple the system in Example 16.20 using the diagonalized form of 𝐴. 
Solution: The system in Example 16.20 is x ′ = 𝐴x. 

−1Let 𝑆 = [5 
1 ] = the matrix with eigenvectors of 𝐴 as columns.1 

0Let Λ = [7 
1] = the diagonal matrix with the eigenvalues of 𝐴 as diagonal entries. 0 

Diagonalization says that 𝐴 = 𝑆Λ𝑆−1. 
The decoupling change of variables is u = 𝑆−1x. We can write this as 

[𝑥 −1 x = 𝑆u or 𝑦] = [5
1 1 

] [𝑢
𝑣] = 𝑢 [1

5] + 𝑣 [−1
1 

] . 

This is exactly the change of variables used in Example 16.20. 
The decoupled system is 

[𝑢′ 0 u ′ = Λu or 𝑣′] = [7
0 1] [𝑢

𝑣] , 

which is exactly the decoupled system found in Example 16.20. 
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16.12 Appendix: symmetric matrices 

This section is optional. We won’t ask about it on psets or tests. The first 
example in this section is a nice exercise in thinking about matrix multiplication 
as a way to transform vectors. 

Example 16.22. Geometry of symmetric matrices. This is a fairly complex example 

[𝑎 0showing how we can use the diagonal matrix Λ = 𝑏] and the rotation matrix 𝑅 =0 

[ 
cos 𝜃 − sin(𝜃) 

cos(𝜃) 
] to convert a circle to an ellipse as shown in the figures below. sin(𝜃) 

To do this, we think of matrix multiplication as a linear transformation. The diagonal 
matrix Λ transforms the circle by scaling the 𝑥 and 𝑦 directions by 𝑎 and 𝑏 respectively. 
This creates the ellipse in Figure (b), which is oriented with the axes. The rotation matrix 
𝑅 then rotates this ellipse to the general ellipse in Figure (c). 

u

v

i

j

(a) Unit circle 

Λi = ai

Λj = bj

(b) Ellipse made by scaling the axes by 𝑎 and 𝑏 respectively 

x

y

−→v1 = RΛi

−→v2 = RΛj
θ

(c) Ellipse in (b) rotated by 𝜃 

In coordinates 𝑅Λ maps the unit circle 𝑢2 + 𝑣2 = 1 to the ellipse shown in (c). That is, 

𝑅Λ [𝑢
𝑣] = [𝑥 or [𝑢

𝑣] = Λ−1𝑅−1 [𝑥 
𝑦] 𝑦] 

Example 16.23. Spectral theorem. The previous example transforms the unit circle in 
𝑢𝑣-coordinates into an ellipse in 𝑥𝑦-coordinates. In terms of inner products and transposes 
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this becomes 

1 = ⟨[𝑢
𝑣] , [𝑢

𝑣]⟩ 

= ⟨Λ−1𝑅−1 [𝑥
𝑦] , Λ−1𝑅−1 [𝑥

𝑦]⟩ 

𝑇 

= [𝑥 (Λ−1𝑅−1)𝑇 Λ−1𝑅−1 [𝑥 
𝑦] 𝑦] 

𝑇 

= [𝑥 𝑅Λ−2𝑅−1 [𝑥 
𝑦] 𝑦] 

The last equality uses the facts that for a rotation matrix 𝑅𝑇 = 𝑅−1 and for a diagonal 
matrix Λ𝑇 = Λ. 
Call the matrix occurring in the last two lines above 𝐴. That is, 

𝐴 = 𝑅Λ−2𝑅−1 = (Λ−1𝑅−1)𝑇 Λ−1𝑅−1. 
We then have the equation of the ellipse is 

𝑇 

1 = [𝑥 𝐴 [𝑥
𝑦] . 𝑦] 

The matrix 𝐴 has the following properties 

1. It is symmetric 

2. Its eigenvalues are 𝑎−2 and 𝑏−2 

3. Its eigenvectors are the the vectors v⃗⃗⃗⃗⃗1⃗⃗⃗ and v⃗⃗⃗⃗⃗2⃗⃗⃗ along the axes of the ellipse (see figure (c) 
above). 
4. Its eigenvectors are orthogonal. 
Proof. 
1. This is clear from the formula 𝐴 = 𝐵𝑇 𝐵 where 𝐵 = Λ−1𝑅−1. 
2. This is clear from the diagonalization 𝐴 = 𝑅Λ−2𝑅−1. (Remember the eigenvalues are in 
the diagonal matrix Λ−2. 
3. We need to show that 𝐴 transforms v⃗⃗⃗⃗⃗1⃗⃗⃗ to a multiple of itself. This also follows by 
considering the action of each term in the diagonalization in turn (see the figures): 𝑅−1 

moves v⃗⃗⃗⃗⃗1⃗⃗⃗ to the 𝑥-axis; then Λ−2 scales the 𝑥-axis by 𝑎−2; and finally 𝑅 rotates the 𝑥-axis 
back the line along v⃗⃗⃗⃗⃗1⃗⃗⃗. Using symbols 

𝐴v⃗⃗⃗⃗⃗1⃗⃗⃗ = 𝑅Λ−2𝑅−1 v⃗⃗⃗⃗⃗1⃗⃗⃗ = 𝑅Λ−2𝑎i = 𝑅(𝑎−2𝑎i) = 𝑎−2 v⃗⃗⃗⃗⃗1⃗⃗⃗ 

The properties of 𝐴 are general properties of symmetric matrices. 
Spectral theorem. A symmetric matrix 𝐴 has the following properties. 
1. It has real eigenvalues. 
2. Its eigenvectors are mutually orthogonal. 
Because of the connection to the axes of ellipses this is also called the principal axis theorem. 



MIT OpenCourseWare 

https://ocw.mit.edu 

ES.1803 Differential Equations 
Spring 2024 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 

https://ocw.mit.edu
https://ocw.mit.edu/terms

	16 Eigenvalues, diagonalization, decoupling
	16.1 Etymology:
	16.2 Definition
	16.3 Why eigenvectors are special
	16.4 Computational algorithm
	16.4.1 Justification of the computational algorithm
	16.4.2 Examples

	16.5 Complex eigenvalues
	16.6 Repeated eigenvalues
	16.7 Diagonal matrices
	16.8 Diagonalization
	16.9 Diagonal matrices and uncoupled algebraic systems
	16.10 Introduction to matrix methods for solving systems of DEs
	16.11 Decoupling systems of DEs
	16.11.1 Decoupling in general

	16.12 Appendix: symmetric matrices


