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17 Matrix methods for solving systems of DEs 

17.1 Goals 

1. Be able to solve constant coefficient linear systems using eigenvalues and eigenvectors. 
Do this when there are real or complex eigenvalues. 

2. Understand and appreciate the abstraction of matrix notation. 

3. Be able to convert a higher order linear DE equation into a companion system of 
coupled first-order equations. 

4. See some physical settings modeled by systems of equations. 

17.2 Introduction 

In this topic we will look in detail at solving linear constant coefficient systems of differential 
equations using eigenvalues and eigenvectors. We will need to consider cases of real, complex 
and repeated eigenvalues. (We will only touch on the case of repeated eigenvalues.). 
An important idea is that any higher order differential equation can be converted into a 
system of first-order equations. This means that our old friend 𝑃 (𝐷)𝑥 = 0 can be converted 
into a system and solved with these methods. This is useful because it is more natural to 
formulate numerical algorithms for first-order systems than for higher order equations. This 
is partly explained by the first section below, which looks at the utility of matrix notation. 

17.3 Matrix notation and why we like it 

We have been using matrix notation for algebraic systems and systems of differential equa-
tions. Let’s remind ourselves why it’s helpful in organizing our thinking. 
One of the simplest algebraic equations is 

𝑎𝑥 = 𝑏, where 𝑎 and 𝑏 are constants and 𝑥 is the unknown. (1) 

We easily solve this for 𝑥: 𝑥 = 𝑎−1𝑏 (provided 𝑎 ≠ 0). 

On the face of it a system of algebraic equations seem more complicated. For example 
consider the following system of two equations in two unknowns: 

6𝑥 + 5𝑦 = 2 

𝑥 + 2𝑦 = 3 

We could solve this by elimination, but here our interest in writing this out abstractly. In 
matrix form the system and its solution become 

−1 

[6 5 5 [2
1 2] [𝑥

𝑦] = [2
3] ⇒ [𝑥

𝑦] = [1
6 

2] 3] 

1 
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5
2], x = [𝑥 If we give names: 𝐴 = [6

1 𝑦], b = [3
2] then the system and its solution become 

𝐴x = b ⇒ x = 𝐴−1b. 

At this level of abstraction we see that the system and its solution are just like those of our 
simplest equation. (One small difference is that we need to take more care with the order 
of matrix multiplication than we do with scalar multiplication.) 

For differential equations our simplest and favorite equation is 

𝑥′ = 𝑎𝑥. 

Written in matrix form, a linear system of DEs looks similar. 

Example 17.1. As above, let 𝐴 = [6
1 2

5] and x = [𝑥
𝑦]. Write the following system in a 

form that resembles our favorite DE. 

𝑥′ = 6𝑥 + 5𝑦 

𝑦′ = 𝑥 + 2𝑦 

Solution: In matrix form this becomes 

[6 
2] [𝑥

𝑦] = [𝑥′ 

or x ′ = 𝐴x.1 
5 

𝑦′] 

The right hand equation looks just like our favorite DE. 
Note: we will call 𝐴 the coefficient matrix of the system. 

17.4 Solving homogeneous DEs using matrix methods 

17.4.1 Review 

In the previous topic we looked briefly at solving linear, homogeneous, constant coefficient 
systems using matrix methods. Recall that we used the method of optimism to guess a 
solution of the form 𝑒𝜆𝑡v. Substituting this in the equation leads immediately to the fact 
that 𝜆 must be an eigenvalue and v an eigenvector. 

We’ll review the process with brief explanations. Later, we will write model solutions that 
skip directly to the characteristic equation. 

[𝑥′ 2Example 17.2. Solve 𝑦′] = [3
1 2] [𝑥

𝑦]. 

This is a linear, homogeneous, constant coefficient system of DEs. 

𝑦] = 𝑒𝜆𝑡v.Solution: Try [𝑥 

2 [3 2Substitution gives: 𝜆𝑒𝜆𝑡v = [3 
2] 𝑒𝜆𝑡 v ⇔ 2] v = 𝜆 v.1 1 
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The boxed equation is the eigenvector/eigenvalue equation, where 𝜆 is the eigenvalue and 
v is the corresponding eigenvector. 
We know how to find eigenvalues and eigenvectors: 

3 − 𝜆 2Characteristic equation: ∣ ∣ = 0 ⇔ 𝜆2 − 5𝜆 + 4 = 0 ⇒ 𝜆 = 4, 1.1 2 − 𝜆 

Eigenvectors are in Null(𝐴 − 𝜆𝐼): 

𝜆1 = 4: 𝐴 − 𝜆𝐼 = [−1 2 Basic eigenvector: v1 = [2
1 −2]. 1]. 

2𝜆2 = 1: 𝐴 − 𝜆𝐼 = [2
1 1]. Basic eigenvector: v2 = [−1

1 ]. 

Two modal solutions are x1(𝑡) = 𝑒4𝑡v1 = 𝑒4𝑡 [2
1] and x2(𝑡) = 𝑒𝑡v2 = 𝑒𝑡 [−1

1 ] . 

The general solution is x = 𝑐1x1 + 𝑐2x2 = 𝑐1𝑒4𝑡 [2
1] + 𝑐2𝑒𝑡 [−1

1 ] . 

Note: Each of the solutions x = 𝑒𝜆𝑡v is called a normal mode or modal solution. 

17.4.2 Complex eigenvalues 

We handle complex eigenvalues in exactly the same manner as we did complex characteristic 
roots for ordinary differential equations. 
Theorem: Suppose 𝐴 is a real matrix. Consider the DE: x ′ = 𝐴x. 
If z is a complex solution to this DE then both the real and imaginary parts of z are also 
solutions. 
Proof: Suppose z = x1 + 𝑖x2 then 

z ′ = 𝐴z 

⇔ (x1 + 𝑖x2)′ = 𝐴(x1 + 𝑖x2)
⇔ x ′1 + 𝑖x ′2 = 𝐴x1 + 𝑖𝐴x2 

If two complex numbers are equal then their real parts must be equal and so must the 
imaginary parts. Therefore, the equation above shows 

x ′1 = 𝐴x1 and x ′2 = 𝐴x2. 

That is, x1 and x2 are both solutions to the DE. 
Notes: 
1. The proof is just linearity written out the long way. 
2. To be perfectly careful we should say that x1 and x2 are the real and imaginary parts of 
z, but this is clear from the context. 
The next example illustrates the use of this theorem. 

−5Example 17.3. Find the general, real-valued solution to [𝑥
𝑦′

′
] = [3

2 1 
] [𝑥

𝑦]. 
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3 − 𝜆 −5Solution: Characteristic equation: |𝐴 − 𝜆𝐼| = ∣ ∣ = 𝜆2 − 4𝜆 + 13 = 02 1 − 𝜆 

Solving, we get 𝜆 = 2 ± 3𝑖. (Complex roots always come in conjugate pairs.) 

Eigenvectors: Find a basis for Null(𝐴 − 𝜆𝐼). 

𝜆 = 2 + 3𝑖: (𝐴 − 𝜆 𝐼) = [1 − 3𝑖 −5
2 −1 − 3𝑖]. 

5By inspection, a basic eigenvector is v1 = [1 − 3𝑖]. 

Note: There is no need to compute the second eigenvector since it is just the complex 
conjugate of the first one. 
This gives us a complex-valued solution 

5 5 z1(𝑡) = 𝑒(2+3𝑖)𝑡 [1 − 3𝑖] = 𝑒2𝑡(cos 3𝑡 + 𝑖 sin 3𝑡) [1 − 3𝑖] 

= 𝑒2𝑡 [ 
5 cos 3𝑡 + 𝑖5 sin 3𝑡 

cos 3𝑡 + 3 sin 3𝑡 + 𝑖(−3 cos 3𝑡 + sin 3𝑡)] 

Just for completeness we give its complex conjugate which is also a solution 

z2(𝑡) = z1(𝑡) = 𝑒(2−3𝑖)𝑡 [ 
5 5 cos 3𝑡 − 𝑖5 sin 3𝑡 

1 + 3𝑖] = 𝑒2𝑡 [cos 3𝑡 + 3 sin 3𝑡 − 𝑖(−3 cos 3𝑡 + sin 3𝑡)] 

The theorem above tells us that The real and imaginary parts of z1 are both solutions: 

5 cos 3𝑡 x1(𝑡) = 𝑒2𝑡 [cos 3𝑡 + 3 sin 3𝑡] 

5 sin 3𝑡 x2(𝑡) = 𝑒2𝑡 [−3 cos 3𝑡 + sin 3𝑡] . 

As always, the general, real-valued solution is given by superposition 

5 cos 3𝑡 5 sin 3𝑡 x(𝑡) = 𝑐1x1 + 𝑐2x2 = 𝑐1𝑒2𝑡 [cos 3𝑡 + 3 sin 3𝑡] + 𝑐2𝑒2𝑡 [−3 cos 3𝑡 + sin 3𝑡] . 

17.4.3 Repeated roots (2 by 2 case only) 

Repeated eigenvalues complicate matters somewhat. We will study this by looking at two 
examples. 

0Example 17.4. (Complete case) Solve [𝑥
𝑦′

′
] = [5

0 5] [𝑥
𝑦] 

Solution: This is a diagonal matrix so the eigenvalues are 𝜆 = 5, 5. 
0For 𝜆 = 5 the matrix 𝐴 − 𝜆𝐼 = [0 
0]. The null space of this matrix is all of R2. That is, 0 

every vector is an eigenvector i.e., the eigenspace is 2 dimensional. Since we only need to 
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choose two independent eigenvectors, we can choose the standard basis vectors: 

v1 = [0
1] , v2 = [1

0] . 

(Any other independent pair would work as well.) 

Thus the general solution to the DE is x = 𝑐1𝑒5𝑡 [1
0] + 𝑐2𝑒5𝑡 [0

1] = 𝑒5𝑡 [𝑐1] . 𝑐2 

This is called the complete case because we have a full complement of basic solutions. That 
is, we have two independent solutions to our second-order system. 

The next example looks at the so-called defective case. The name comes from the following 
ideas. If a matrix has a repeated eigenvalue we would like an independent eigenvector for 
each time the eigenvalue is repeated. The matrix is defective if this is not the case. 

−1Example 17.5. (Defective case) Solve [𝑥
𝑦′

′
] = [7

4 3 
] [𝑥

𝑦] 

Solution: First we find the eigenvalues: The characteristic equation is 

|𝐴 − 𝜆 𝐼| = 𝜆2 − 10𝜆 + 25 = 0. 

So the eigenvalues are repeated: 𝜆 = 5, 5. 
Next we find the basic eigenvectors v. As usual, we need find to a basis of Null(𝐴 − 𝜆 𝐼). 

For 𝜆 = 5: 𝐴 − 𝜆𝐼 = [2 −1
4 −2]. 

−1/2The row reduced echelon form (RREF) of the coefficient matrix is 𝑅 = [1
0 0 

]. 

This has only one free variable, so the eigenspace is only one dimensional. A basis is given 

by v1 = [1
2]. 

This eigenvector gives us one solution to the DE: x1 = 𝑒5𝑡 [2
1] 

As we said, this case is defective. The system is second-order but the eigenmethods only 
found one solution. We’ll use a magic algorithm to find a second solution. Below we’ll see 
why the magic worked. You will need to take 18.06 (or even better 18.701) for more insight 
on why this works. 
The first step of the algorithm is to solve (𝐴 − 𝜆𝐼)v2 = v1. That is, 

−1[2
4 −2] [𝑎

𝑎
1
2
] = [1

2] 

Using row reduction (or by inspection) we find that one solution is v2 = [1
1]. 

The algorithm now tells us that a second solution to the DE is 

x2 = 𝑡𝑒5𝑡v1 + 𝑒5𝑡v2 = 𝑡𝑒5𝑡 [1
2] + 𝑒5𝑡 [1

1] . 
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Now that we have two solutions we can give the general solution to the DE: 

x(𝑡) = 𝑐1x1 + 𝑐2x2 

= 𝑐1 𝑒5𝑡 [1
2] + 𝑐2 (𝑡𝑒5𝑡 [1

2] + 𝑒5𝑡 [1
1]) 

Abstract version of defective case 

The example above is complicated by actual computations. Here is the abstract version of 
the algorithm for the defective case. We check that the result is a solution by plugging it 
into the DE. 
The algorithm uses two vectors 
1. An eigenvector v1, i.e., 𝐴v1 = 𝜆v1 

2. A vector v2 that satisfies (𝐴 − 𝜆 𝐼)v2 = v1. 
v2 is called a generalized eigenvector. In the proof below, we will need to use this in the 
form: 𝐴v2 = v1 + 𝜆v2. 
We assert that x1(𝑡) = 𝑒𝜆𝑡v1 and x2(𝑡) = 𝑡𝑒𝜆𝑡v1 + 𝑒𝜆𝑡v2 are independent solutions to the 
DE. 
Proof: We know that 𝑥1 is the eigenvector solution. To check that x2 is a solution, we 
plug it into the DE and check that both sides of the equation are the same. 

(left side) x ′ 
2 = 𝜆𝑡𝑒𝜆𝑡v1 + 𝑒𝜆𝑡v1 + 𝜆𝑒𝜆𝑡v2 = 𝜆𝑡𝑒𝜆𝑡v1 + 𝑒𝜆𝑡(v1 + 𝜆v2) 

(right side )𝐴x2 = 𝑡𝑒𝜆𝑡𝐴v1 + 𝑒𝜆𝑡𝐴v2 = 𝜆𝑡𝑒𝜆𝑡v1 + 𝑒𝜆𝑡(v1 + 𝜆v2) 

Comparing both sides we see that x ′ 
2 = 𝐴x2. That is, x2 is a solution. 

17.5 Companion systems 

Early in 18.03 we learned how to solve ordinary differential equations 𝑃 (𝐷)𝑥 = 0. For 
example 𝑥″+8𝑥′+7𝑥 = 0. In this section we will convert a higher order ordinary differential 
equation to a system of first-order equations. 
Example 17.6. Convert the ODE 𝑥″ + 8𝑥′ + 7𝑥 = 0 to a system of first-order equations. 
Solution: Introduce a second variable 𝑦 = 𝑥′ . Our ODE then becomes 

𝑦′ + 8𝑦 + 7𝑥 = 0. 

Writing out the equations for 𝑥′ and 𝑦′ we get 

𝑥′ = 𝑦 [𝑥′ 1
𝑦′ = −7𝑥 − 8𝑦 

⇔ 𝑦′] = [−7
0 

−8] [𝑥
𝑦] 

The system is called the companion system to the original ODE. We call the coefficient 
matrix the companion matrix. 
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We will sometimes refer to the method of converting an ODE to a system as anti-elimination. 
This is because elimination is a process of removing variables and equations, so anti-
elimination is a process of adding variables and equations. 

Example 17.7. Find the companion system for the ODE 𝑥‴ + 2𝑥″ + 5𝑥′ + 7𝑥 = 0. 
Solution: Let 𝑦 = 𝑥′ and 𝑧 = 𝑦′ = 𝑥″ . The ODE becomes 𝑧′ + 2𝑧 + 5𝑦 + 7𝑥 = 0. So our 
companion system is 

𝑥′ = 𝑦 𝑥′ 0 1 0 𝑥 
⎡ ⎤ = ⎡ ⎤ ⎡ ⎤𝑦′ = 𝑧 ⇔ ⎢𝑦′⎥ ⎢ 0 0 1 ⎥ ⎢𝑦⎥

𝑧′ = −7𝑥 − 5𝑦 − 2𝑧 ⎣𝑧′⎦ ⎣−7 −5 −2⎦ ⎣𝑧⎦ 

17.6 Physical examples 

Example 17.8. Population models 
Suppose we have two countries with time varying populations 𝑥 and 𝑦. Suppose also that 
the natural growth rate in the countries is 2% and 2% respectively. In addition every year 
3% of the country 1 moves to country 2 and 1% of country 2 moves to country 1. 
Give a system of differential equations modeling this scenario. Assume initial populations 
of 𝑥(0) = 2 and 𝑦(0) = 2 (in units of one million). Solve the system and interpret the 
eigenvectors in terms of populations. 
Solution: We have 

𝑥′ = 0.02𝑥 − 0.03𝑥 + 0.01𝑦 = −0.01𝑥 + 0.01𝑦 [𝑥
𝑦′

′
] = [−0.01 0.01⇔𝑦′ = 0.03𝑥 + 0.02𝑦 − 0.01𝑦 = 0.03𝑥 + 0.01𝑦 0.03 0.01] [𝑥

𝑦] 

We solve by finding eigenvalues and eigenvectors. 
−0.01 − 𝜆 0.01Characteristic equation: ∣ ∣ = 0 ⇒ 𝜆 = 0.02, −0.02 0.03 0.01 − 𝜆 

Eigenvectors (basis of Null(𝐴 − 𝜆𝐼), where 𝐴 is the coefficient matrix: 

𝜆1 = 0.02: 𝐴 − 𝜆𝐼 = [−0.03 0.01 Basic eigenvector: v1 = [1
0.03 −0.01]. 3] 

𝜆2 = −0.02: 𝐴 − 𝜆𝐼 = [0.01 0.01 Basic eigenvector: v2 = [ 
1

0.03 0.03]. −1] 

The general solution is 

[𝑥(𝑡) 
3] + 𝑐2𝑒−0.02 𝑡 [ 

1
𝑦(𝑦)] = 𝑐1𝑒0.02 𝑡 [1 

−1] 

The initial conditions produce 𝑐1 = 1 and 𝑐2 = 1. So 

[𝑥(𝑡) 
3] + 𝑒−0.02 𝑡 [ 

1
𝑦(𝑡)] = 𝑒0.02 𝑡 [1 

−1] 

Over time the 𝑒−0.02𝑡 term will go to 0 and the populations will grow exponentially and in 
a ratio of 𝑥/𝑦 ≈ 1/3. 

https://��1��0.02
https://��2���0.02
https://0.02,�0.02
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Some eigenvectors may have negative entries and some eigenvalues may be negative or 
complex. However, any population vector is a combination of these pure modes. 

Example 17.9. Coupled springs. Suppose we have two masses and springs configured as 
shown. 

m1 m2

x(t) y(t)
f(t)

k1 k2

𝑥 is the displacement of 𝑚1 from its equilibrium position. 
𝑦 is the displacement of 𝑚2 from its equilibrium position. 
(So the amount that Spring 2 is stretched is 𝑦 − 𝑥.) 

𝑓(𝑡) is a time-varying force applied to 𝑚2. 
Using Hooke’s law, we get the following system of equations 

𝑚1𝑥̈ = −𝑘1𝑥 + 𝑘2(𝑦 − 𝑥) 

𝑚2𝑦̈ = −𝑘2(𝑦 − 𝑥) + 𝑓(𝑡) 

We can rearrange this to be 

𝑥 = −𝑘1 + 𝑘2̈ 𝑥 + 
𝑘2 𝑦 𝑚1 𝑚1

𝑘2 𝑦 + 
𝑓(𝑡) 𝑦 ̈ = 𝑥 − 

𝑘2
𝑚2 𝑚2 𝑚2 

The system is fourth-order because it consists of 2 second-order equations. You should 
think about how you would produce a companion system of 4 first-order equations. 
This system is illustrated by the applet https://mathlets.org/mathlets/coupled-oscillators/ 
(You’ll have to set one of the spring constants to 0.) 

Example 17.10. Salt tanks. Suppose we have two tanks containing a salt solution. Initially 
the volume of water in the tanks is 𝑉1 and 𝑉2 respectively. Pure water flows into Tank 1 
from the outside at 𝑟𝐼 liters/minute. Solution flows out of Tank 2 at a rate of 𝑟𝑂 liters/min. 
Solution is exchanged between the tanks, as shown, at the rates 𝑟1 and 𝑟2 in liters/min. 
Suppose the rates and volumes are: 
𝑟𝐼 = 20 (pure water), 𝑟1 = 10, 𝑟2 = 30, 𝑟𝑂 = 20 

𝑉1 = 100 liters, 𝑉2 = 200 liters. 
Note that the flow rates are balanced, so that 𝑉1 and 𝑉2 do not change. 

https://mathlets.org/mathlets/coupled-oscillators/
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r1

r2

V1 V2rI

rO

Write a system of DEs modeling the amount of salt in each tank. 
Solution: Let 𝑥 be the grams of salt in Tank 1 and let 𝑦 be the grams of salt in Tank 2. 
Before starting, let’s note that because pure water is being added all the salt will eventually 
be flushed out of the tanks, i.e., both 𝑥 and 𝑦 → 0 in the long run. We should check that 
our answer reflects this. 
Now for the model: 𝑥′ = rate salt into Tank 1 - rate salt out of Tank 1). 

𝑦 10rate in = flow ⋅ concentration = 𝑟2 ⋅ 𝑉2 
= 10 l/min ⋅ y g/200 l = 200𝑦 g/min. 

𝑥 30rate out = 𝑟1 ⋅ 𝑉1 
= 100𝑥 g/min. 

Thus, 𝑥′ = −10
3 𝑥 + 20

1 𝑦 

𝑦 Likewise for 𝑦′ : rate in = 𝑟1 ⋅ 𝑥
𝑉

2
2 
, rate out = (𝑟2 + 𝑟𝑂) ⋅ 𝑉2 

So 𝑦′ = 10
3 𝑥 − 20

3 𝑦. 
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