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19 Fundamental matrix, variation of parameters 

This topic is no longer on the syllabus. We post these notes for anyone who is 
interested. 

19.1 Goals 

1. Be able to recognize a linear non-constant coefficient system of differential equations. 

2. Know the definition and basic properties of a fundamental matrix for such a system. 

3. Be able to use the matrix exponential as a fundamental matrix for a constant coeffi-
cient linear system. 

4. Be able to use the variation of paramters formula to solve a (nonconstant) coefficient 
linear inhomogeneous system. 

5. Be able to use Euler’s method to approximate the solution to a system of first-order 
equations. 

19.2 Introduction 

So far we have focused on homogeneous, constant coefficient linear systems. We now want 
to think about systems with input or with non-constant coefficients. So in this topic we will 
consider general linear systems of differential equations. That is, equations of the following 
form. 

x ′ = 𝐴(𝑡)x (homogeneous) (H) 

x ′ = 𝐴(𝑡)x + F(𝑡) (inhomogeneous) (I) 

Here x(𝑡) is a vector valued function, e.g., (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))𝑇 , 𝐴(𝑡) is an 𝑛 × 𝑛 matrix called 
the coefficient matrix and F(𝑡) is called the (mathematical) input to the system. 
As usual, solving the system means finding the unknown vector valued function x(𝑡) . 
A main point in this topic is to introduce the fundamental matrix, Φ(𝑡), for a linear system 
of DEs. This will allow us to state the essential properties of these systems in a concise and 
elegant way. The fundamental matrix is available for any linear system. We will see that 
the matrix exponential 𝑒𝐴𝑡, introduced in a previous topic, is a fundamental matrix for the 
constant coefficient system x ′ = 𝐴x. 
Next, we will look at linear equations with arbitrary input. This will lead to the variation of 
parameters formula for the solution. This is a beautiful formula, which uses the fundamental 
matrix. Since it involves integrals and can be painful or difficult to apply, we will use it as 
a last resort to find solutions to equations with nonconstant coefficients or unusual input. 
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We will conclude with a small section showing that Euler’s method works for systems of 
first-order equations in exactly the same way as for ordinary first-order differential equations. 
We start by going over the familiar ideas of linearity and existence and uniqueness. 

19.3 Linearity/Superposition 

As always, linear systems satisfy superposition principles. We restate them in the forms we 
like to use. 
1. If x1 and x2 are solutions to Equation (H), then so is x = 𝑐1x1 + 𝑐2x2 

Proof. x ′ = 𝑐1x1 
′ + 𝑐2x2 

′ = 𝑐1𝐴x1 + 𝑐2𝐴x2 = 𝐴(𝑐1x1 + 𝑐2x2) = 𝐴x. 

2. If xh is a solution to Equation (H) and xp is a solution to Equation (I) then x = xp + xh 

is also a solution to Equation (I). 
′ Proof. x ′ = xp 

′ + xh = 𝐴xp + F + 𝐴xh = 𝐴(xp + xh) + F = 𝐴x + F. 

3. If x1 
′ = 𝐴x1 + F1 and x2 

′ = 𝐴x2 + F2 then x1 + x2 satisfies x ′ = 𝐴x + F1 + F2 

That is, superposition of inputs leads to superposition of outputs. 
Proof. Just the same. 

19.4 Existence and uniqueness theorem 

As we’ve done for other types of equations, we state an existence and uniqueness theorem so 
that we can be sure that we have found all the solutions when we use the 𝑥(𝑡) = 𝑥𝑝(𝑡)+𝑥ℎ(𝑡)
paradigm. 
Consider the initial value problem: 

x ′ = 𝐴(𝑡)x + F(𝑡), x(𝑡0) = x0 (IVP) 

The existence and uniqueness theorem says that there is exactly one solution to this equa-
tion. 
Theorem. (existence and uniqueness) If 𝐴(𝑡) and F(𝑡) are continuous then there exists a 
unique solution to the equation (IVP). 

The next example illustrates that this new version of the existence and uniqueness theorem 
agrees with our old version for second-order linear equations. 
Example 19.1. Consider the IVP 𝑥″ + 𝑡𝑥′ + 𝑡2𝑥 = 𝑡3; 𝑥(0) = 1, 𝑥′(0) = 3. 
Converting this DE to a system using 𝑦 = 𝑥′ , we get: 

[𝑥′ 1 
𝑦] + [𝑡

0
3] , [𝑥(0) 

3] . 𝑦′] = [−𝑡
0

2 −𝑡] [𝑥 
𝑦(0)] = [1 

More abstractly we can write this as: x ′ = 𝐴x + F; x(0) = [1 3]T 

Since 𝐴(𝑡) and F(𝑡) are continuous the existence and uniqueness for systems says there is a 
unique solution to the system. Now, 𝑥(𝑡) is the first entry in this solution, so there is also 
a unique solution to the original IVP. 
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Note. Previously, we had an existence and uniqueness theorem for ordinary differential 
equations which said exactly the same thing. 

19.5 Fundamental matrix 

This is an elegant bookkeeping technique which will make calculations and theorem state-
ments much nicer. Consider the linear homogeneous system 

x ′ = 𝐴(𝑡)x (H) 

Suppose it is an 𝑛×𝑛 system and that we have 𝑛 independent solutions x1, … xn. We define 
the fundamental matrix as the matrix with columns x1, … , xn, i.e. 

Φ(𝑡) = [x1(𝑡) x2(𝑡) … xn(𝑡)]. 

5Example 19.2. Consider the system x ′ = [6 
2] x.1 

(a) Find a fundamental matrix for this system. 
(b) Use the fundamental matrix to give the general solution to this system. 
(c) Find the solution with initial conditions x(𝑡𝑜) = b. 
Solution: (a) We’ve used this coefficient matrix many times. We know two independent 
solutions to the system are 

x1 = 𝑒𝑡 [−1
1 ] , x2 = 𝑒7𝑡 [1

5] . 

5𝑒7𝑡 

So a fundamental matrix is Φ(𝑡) = [ 
𝑒𝑡 

𝑒7𝑡 ].−𝑒𝑡 

(b) The general solution is 

x = 𝑐1x1 + 𝑐2x2 = 𝑐1 [−𝑒
𝑒𝑡 

𝑡] + 𝑐2 [
5𝑒
𝑒7𝑡 

7𝑡
] = Φ(𝑡) ⋅ [𝑐1] . 𝑐2 

(The last expression follows because matrix multiplication is a linear combination of the 
columns of Φ.) 

(c) Now, we can use this to find the solution to the IVP with initial conditions x(𝑡0) = b. 

[𝑐1 [𝑐1 [𝑐1x(𝑡) = Φ(𝑡) ⋅ ] ⇒ Φ(𝑡0) ⋅ ] = b ⇒ ] = Φ−1(𝑡0)b.𝑐2 𝑐2 𝑐2 

This is valid provided Φ−1(𝑡0) exists. We will show this below. 

19.5.1 Properties of the fundamental matrix 

We have the following important properties of the fundamental matrix Φ. 
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1. Φ′(𝑡) = 𝐴(𝑡)Φ(𝑡) i.e., Φ satisfies Equation (H). 

2. If c is a column vector, then Φ(𝑡) ⋅ c = 𝑐1x1 + 𝑐2x2 + … + 𝑐𝑛xn. 

3. If 𝐴(𝑡) is continuous, then 𝑊 (𝑡) = |Φ(𝑡)| ≠ 0 equivalently Φ−1(𝑡) exists. (We call
𝑊 (𝑡) the Wronskian of x1, … , xn.) 

Proof. (1) Before proving this, we note the following property of matrix multiplication: if
𝐵 has columns b1, b2, … , bn then 

𝐴𝐵 = [𝐴b1 𝐴b2 … 𝐴bn] . 
You should make sure you understand this. (If it is confusing, work out a simple numerical 
example with an eye to understanding this property.) 

Now (1) follows easily from this property: 
Φ′(𝑡) = [x1 

′ x2 
′ … xn 

′ ] = [𝐴x1 𝐴x2 … 𝐴xn] = 𝐴 [x1 x2 … xn] = 𝐴(𝑡)Φ(𝑡). 
The second equality above follows because the xj are solutions to Equation (H). The third 
equality is the property of matrix multiplication discussed just above. 
(2) This is just a property of matrix multiplication. 
(3) We will prove this by contradiction, i.e., we’ll assume that for some 𝑡0, 𝑊(𝑡0) = 0 
and show that this contradicts the existence and uniqueness theorem. So suppose that
𝑊(𝑡0) = 0. This implies that Φ(𝑡0) has a nontrivial null space. Let c ≠ 0 be a nontrivial 
null vector. The contradiction is that now there are two solutions with x(𝑡0) = 0. That is, 
both 

x1(𝑡) ≡ 0 and x2(𝑡) = Φ(𝑡)c 

are 0 at 𝑡 = 𝑡0. This contradiction means that our assumption that 𝑊(𝑡0) = 0 must be 
false. QED 

[6 5Example 19.3. Consider the system x ′ = 2] x from Example 19.2. Show that its 1 
Wronskian is never 0. 

5𝑒7𝑡 

Solution: In example 19.2 we found the fundamental matrix Φ(𝑡) = [ 
𝑒𝑡 

𝑒7𝑡 ]−𝑒𝑡 

So the Wronskian is 𝑊 (𝑡) = |Φ(𝑡)| = 𝑒8𝑡 + 5𝑒8𝑡 = 6𝑒8𝑡, which is never 0. 

5Example 19.4. Again, consider the system x ′ = [6 
2] x. Let 𝐴 be the coefficient matrix. 1 

Show that the matrix exponential 𝑒𝐴𝑡 is a fundamental matrix and compute its Wronskian. 
Solution: To show 𝑒𝐴𝑡 is a fundamental matrix, we need to show that every solution can 
be written as 𝑒𝐴𝑡c for some constant vector c. This was shown in the Topic 18 notes. 
To compute the Wronskian we use the diagonalized form of 𝐴: 

−15 0 5𝐴 = 𝑆Λ𝑆−1 = [−1
1 

1] [1
0 7] [−1

1 
1] . 

So, 
0𝑊 (𝑡) = det(𝑒𝐴𝑡) = det(𝑆𝑒Λ𝑡𝑆−1) = det(𝑒Λ𝑡) = det ([𝑒𝑡 

𝑒7𝑡]) = 𝑒8𝑡 ≠ 0. 0 
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19.5.2 The Wronskian of 𝑛 solutions 

In the above we assumed that the solutions were independent. Even if they are not, we can 
still define the Wronskian: Suppose x1, … xn are solutions to Equation (H). We call the 
determinant 𝑊 (𝑡) = det [x1 … xn] the Wronskian of these solutions. If 𝐴(𝑡) is continuous 
then the existence and uniquenss theorem implies: 
(i) 𝑊 (𝑡) is either always 0 or never 0. 
(ii) 𝑊(𝑡) ≠ 0 ⇔ x1, … , xn are independent. 
(iii) 𝑊(𝑡) ≠ 0 ⇔ Φ = [x1 x2 … xn] is a fundamental matrix. 
Conclusion: we can use the Wronskian to test for independence. 

Example 19.5. Consider 𝑥″ + 𝑝(𝑡)𝑥′ + 𝑞(𝑡)𝑥 = 0, with solutions 𝑥1, 𝑥2. Convert this to a 
first-order system. Then give two solutions to the system and compute their Wronskian. 
Solution: The companion system is found by setting 𝑦 = 𝑥′ . Thus the solutions 𝑥1 and 

= [𝑥1 = [𝑥2𝑥2 of the ordinary differential equation become the solutions x1 ] and x2 ] of𝑥′
1 𝑥′

2 
the companion system. Using the definition of the Wronskian we have 

𝑊 (𝑡) = det [𝑥1 𝑥2] = 𝑥1𝑥′
2 − 𝑥1

′ 𝑥2.𝑥′
1 𝑥2

′ 

19.6 Variation of parameters formula 

For the general, not necessarily constant coefficient, linear inhomogeneous system (I) we 
cannot use constant coefficient techniques like the ERF. For those cases where we have no 
other technique, we can try to use the variation of parameters formula. Since it involves 
integration, matrix inverses and matrix multiplication, it is our last choice when trying to 
solve an equation. Nonetheless, sometimes it’s the only method available. In addition, the 
derivation of the formula is really very pretty. 
Suppose we have a fundamental matrix Φ(𝑡) for the homogeneous linear equation 

x ′ = 𝐴(𝑡)x (H) 

Remember this means that Φ has columns which are independent solutions to (H). 
Now suppose we want to solve 

x ′ = 𝐴(𝑡)x + F(𝑡). (I) 

Theorem. The general solution to equation (I) is given by the variation of parameters 
formula 

x(𝑡) = Φ(𝑡) ⋅ (∫ Φ(𝑡)−1 ⋅ F(𝑡) 𝑑𝑡 + C) . 

Proof. We will use a form of the method of optimism to derive this formula. 
We know the general homogeneous solution is x(𝑡) = Φ(𝑡) ⋅ c for a constant vector c. The 
vector c is called a parameter. Variation of parameters is an old-fashioned way of saying 
let’s optimistically make it a (dependent) variable u(𝑡). So we try a solution of the form 
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x(𝑡) = Φ(𝑡) ⋅ u(𝑡). The function u(𝑡) is unknown. To find it, we substitute our guess into 
(I) and see where the algebra leads us: 

Φ′ ⋅ u + Φ ⋅ u ′ = 𝐴Φ ⋅ u + F 

So, (don’t forget Φ′ = 𝐴Φ.) 

𝐴Φ ⋅ u + Φ ⋅ u ′ = 𝐴Φ ⋅ u + F ⇒ Φ ⋅ u ′ = F. 

This last equation is easy to solve: 

u ′ = Φ−1 ⋅ F ⇒ u(𝑡) = ∫ Φ−1(𝑡) ⋅ F(𝑡) 𝑑𝑡 + C. 

Finally, we take this formula for u(𝑡) and use it in our trial solution: 

x(𝑡) = Φ(𝑡) ⋅ u(𝑡) = Φ(𝑡) ⋅ (∫ Φ(𝑡)−1 ⋅ F(𝑡) 𝑑𝑡 + C) . ■ 

Remark. Note that the variation of parameters formula assumes you know the general 
homogeneous solution. It gives no help in finding this solution. 
Example 19.6. Use the variation of parameters formula to solve 

x ′ = [6
1 2

5] x + [𝑒
𝑒
5𝑡
𝑡 

] . 

Note. We retiterate that using the ERF is the preferred method of solving this equation. 
We use the variation of parameters formula here for practice. 

5Solution: Let’s introduce some notation to save typing: 𝐴 = [6
1 2], F = [1

𝑡]. 

[ 
𝑒𝑡 5𝑒7𝑡 

We know a fundamental matrix from an earlier example: Φ(𝑡) = −𝑒𝑡 𝑒7𝑡 ]. So, 

Φ−1(𝑡) = 𝑒−8𝑡 [𝑒7𝑡 −5𝑒7𝑡 

6 𝑒𝑡 𝑒𝑡 ]. Calculating with the variation of parameters we get 

x = Φ(𝑡) ∫ Φ−1(𝑡) ⋅ F(𝑡) 𝑑𝑡 

[𝑒7𝑡 −5𝑒7𝑡 

[ 
𝑒𝑡 

= Φ(𝑡) ∫ 
𝑒−8𝑡 

] ⋅ 𝑒5𝑡] 𝑑𝑡 6 𝑒𝑡 𝑒𝑡 

6 
[ 

1 − 5𝑒4𝑡 

= Φ(𝑡) ∫ 
1 

𝑒−6𝑡 + 𝑒−2𝑡] 𝑑𝑡 

1 𝑡 − 5
4𝑒4𝑡 + 𝑐1= 6Φ(𝑡) [−6

1𝑒−6𝑡 − 1
2𝑒−2𝑡 + 𝑐2

] 

1
6 [ 𝑡𝑒𝑡 − 5

4𝑒5𝑡 − 6
5𝑒𝑡 − 5

2𝑒5𝑡 + 𝑐1𝑒𝑡 + 5𝑐2𝑒7𝑡 

= −𝑡𝑒𝑡 + 5
4𝑒5𝑡 − 1

6𝑒𝑡 − 2
1𝑒5𝑡 − 𝑐1𝑒𝑡 + 𝑐2𝑒7𝑡] 

1= 6 
(𝑡𝑒𝑡 [ 

1 
3/4 

] + 𝑒𝑡 [−5/6 
−1] + 𝑐2𝑒7𝑡 [5

1]) . −1] + 𝑒5𝑡 [−15/4 
−1/6] + 𝑐1𝑒𝑡 [ 

1 

Notice the homogeneous solution appearing with the constants of integration. 
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19.6.1 Definite integral version of variation of parameters 

The equation (I) with initial condition x(𝑡0) = b has definite integral solution 

x(𝑡) = Φ(𝑡) (∫
𝑡 

Φ−1(𝑢) ⋅ F(𝑢) 𝑑𝑢 + C) where C = Φ−1(𝑡0) ⋅ b. 
𝑡0 

19.7 Euler’s method 

Consider a first-order system with initial conditions: 

x = F(x, 𝑡), x(𝑡0) = x0. 

Euler’s method for ordinary first-order DEs works without any change for this first-order 
systems. That is, fix a stepsize ℎ. Then, the step from (xn, 𝑡𝑛) to (xn+1, 𝑡𝑛+1) is given 
by 

m = F(xn, 𝑡𝑛) ⇒ xn+1 = xn + ℎm, 𝑡𝑛+1 = 𝑡𝑛 + ℎ. 
Just as for ordinary DEs, there are other, better, algorithms for choosing m or varying ℎ. 

Example 19.7. Consider [𝑥
𝑦′

′
] = 𝑡 [𝑥

𝑦], x(1) = [1
0]. Let x = [𝑥

𝑦] and use ℎ = 0.5 to 

estimate x(2). 
Solution: 

𝑛 𝑡𝑛 xn m = F(xn, 𝑡𝑛) 

0 1.0 [1
0] [0

1] 

[0.75 1 1.5 [ 1
0.5] 1.5 

] 

[1.375 2 2.0 1.25 
] 

So, x(2) ≈ [1.375
11.25]. 
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