
ES.1803 Topic 2 Notes
Jeremy Orloff 

2 Linear systems: input-response models 

2.1 Goals 

1. Be able to classify a first-order differential equation as linear or nonlinear. 

2. Be able to put a first-order linear DE into standard form. 

3. Be able to use the variation of parameters formula to solve a first-order linear DE. 

4. Be able to explain why the superposition principle holds for first-order linear DEs 

5. Be able to use the superposition principle to solve a first-order linear DE by breaking 
the input into pieces. 

2.2 Linear first-order differential equations 

To start with we will define linear first-order equations by their form. Soon we will un-
derstand them by their properties. In particular, you should be on the lookout for the 
statement of the superposition principle and in later topics for the conceptual definition of 
linearity. 

2.2.1 General and standard form of first-order linear differential equations 

Definition. The general first-order linear differential equation has the form 

𝐴(𝑡)𝑑𝑦 
𝑑𝑡 + 𝐵(𝑡)𝑦(𝑡) = 𝐶(𝑡). (1) 

As long as 𝐴(𝑡) ≠ 0 we can simplify the equation by dividing by 𝐴(𝑡). This gives the 
standard form of a first-order linear differential equation. 

𝑑𝑦 
𝑑𝑡 + 𝑝(𝑡)𝑦(𝑡) = 𝑞(𝑡). (2) 

Most often when working with linear DEs we will need to put it in the standard form in 
Equation 2. 

2.2.2 Terminology and notation 

The functions 𝐴(𝑡), 𝐵(𝑡) in Equation 1 and 𝑝(𝑡) in Equation 2 are called the coefficients 
of the differential equation. If 𝐴 and 𝐵 (or 𝑝) are constants, i.e., do not depend on the 
variable 𝑡, then we say the equation is a constant coefficient differential equation. 
Notice that the functions 𝐶(𝑡) or 𝑞(𝑡) on the right-hand side of the equations are not called 
coefficients and do not have to be constant, even in a constant coefficient DE. 
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2.2.3 Homogeneous/inhomogeneous 

If 𝐶(𝑡) = 0 in Equation 1 then the resulting equation: 

𝐴(𝑡)𝑦′ + 𝐵(𝑡)𝑦 = 0 

is called homogeneous. Otherwise the equation is called inhomogeneous. 
Note: Homogeneous is not the same word as homogenous (or homogenized). In homoge-
neous the syllable ’ge’ is pronounced with a long e and is stressed, while the syllable ’mo’ 
is stressed in homogenous. 

2.2.4 Identifying first-order linear equations 

The Equations 1 and 2 have the form that 𝑦′ and 𝑦 occur separately and only as first powers. 

Example 2.1. The following differential equations are all linear: 
Linear: 𝑦′ = 𝑘𝑦; 𝑦′ + 𝑒sin(𝑡)𝑦 = 𝑡2; 𝑦′ + 𝑡2𝑦 = 𝑡3. 
And the following are all non-linear: 
Non-linear: 𝑦′ + 𝑦2 = 𝑡; (𝑦′)2 + 𝑦 = 𝑡; 𝑦′𝑦 = 𝑡. 
Notice that the coefficient functions in a linear DE are not restricted in any way, but that 
𝑦 and 𝑦′ never occur in the same term and only have first powers. 

Example 2.2. Modeling a population of oryx. A population of oryx has a natural growth 
rate 𝑘 in units of 1/year and they are harvested at a constant rate of ℎ oryxes/year. Con-
struct a first-order differential equation modeling the population over time. 

An Oryx gazella, also known as a Gemsbok 
© Rod Waddington on Flickr. License CC BY-SA. Some rights reserved. 
This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use. 

Solution: Let 𝑦(𝑡) be the oryx population. By natural growth rate we mean that without any 
outside influences population grows at a rate proportional to itself, i.e., 𝑦′ = 𝑘𝑦. The 
harvesting changes the growth rate by removing oryx at the rate ℎ. Combining the two rates 
we have 

𝑦′ = 𝑘𝑦 − ℎ. 

https://ocw.mit.edu/help/faq-fair-use
https://www.flickr.com/photos/rod_waddington/
https://www.flickr.com/photos/rod_waddington/53075095548/
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This is a first-order linear DE. In standard form it reads 

𝑦′ − 𝑘𝑦 = −ℎ. 

2.3 Solving first-order linear equations 

2.3.1 The variation of parameters formula 

We start by giving a formula for the solution to a first-order linear DE in standard form. 
The differential equation 𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡) has solution 

𝑦ℎ(𝑡) 
𝑑𝑡 + 𝐶𝑦ℎ(𝑡), where 𝑦ℎ(𝑡) = 𝑒− ∫ 𝑝(𝑡) 𝑑𝑡.𝑦(𝑡) = 𝑦ℎ(𝑡) ∫ 

𝑞(𝑡) (3) 

The function 𝑦ℎ(𝑡) is the solution to the associated homogeneous equation: 

𝑦ℎ
′ + 𝑝(𝑡)𝑦ℎ = 0. 

Notes: 1. As usual for a first-order DE, the solution is a one parameter family of functions. 
2. The formula in Equation 3 is called the variation of parameters formula. The reason 
for the name comes from the method of deriving it that we give in the last section of this 
topic’s notes. 
Warning: The variation of parameters formula is quite beautiful, but don’t be seduced 
into using it in every situation. Because it involves integration it is, generally speaking, 
our method of last resort. When we focus on constant coefficient equations we will learn 
easier and more informative techniques. 

2.3.2 Examples 

Example 2.3. Solve 𝑦′ + 𝑘𝑦 = 𝑘, where 𝑘 is a constant. 
Solution: In this case 𝑝(𝑡) = 𝑘 is a constant. The homogeneous solution is 

𝑦ℎ(𝑡) = 𝑒− ∫ 𝑘 𝑑𝑡 = 𝑒−𝑘𝑡. 
Therefore, the general solution to the DE is 

𝑘 𝑦(𝑡) = 𝑦ℎ(𝑡) ∫ 𝑞(𝑡)/𝑦ℎ(𝑡) 𝑑𝑡 + 𝐶𝑦ℎ(𝑡) = 𝑒−𝑘𝑡 ∫ 𝑒−𝑘𝑡 
𝑑𝑡 + 𝐶𝑒−𝑘𝑡 

= 𝑒−𝑘𝑡 ∫ 𝑘𝑒𝑘𝑡 𝑑𝑡 + 𝐶𝑒−𝑘𝑡 = 𝑒−𝑘𝑡 ⋅ 𝑒𝑘𝑡 + 𝐶𝑒−𝑘𝑡 = 1 + 𝐶𝑒−𝑘𝑡 

(Again: don’t get too attached to this technique, later we will learn better techniques for 
solving constant coefficient equations.) 

Example 2.4. Solve 𝑦′ + 𝑘𝑦 = 𝑘𝑡, where 𝑘 is a constant. 
Solution: 𝑦ℎ is the same as in the previous example. Therefore, 

𝑦(𝑡) = 𝑒−𝑘𝑡 ∫ 𝑘𝑡𝑒𝑘𝑡 𝑑𝑡 + 𝐶𝑒−𝑘𝑡 = (𝑡 − 𝑘
1) + 𝐶𝑒−𝑘𝑡. 

(We computed this integral using integration by parts.) 
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2.4 Superposition principle 

We start by defining the terms superposition, input and output. 
Superposition is a fancy way of describing adding together multiples of two functions. 
Examples: 1. The function 𝑞(𝑡) = 3𝑡 + 4𝑡2 is a superposition of 𝑡 and 𝑡2. 
2. If 𝑞1(𝑡) and 𝑞2(𝑡) are functions then 𝑞(𝑡) = 3𝑞1 + 4𝑞2 is a superposition of 𝑞1 and 𝑞2. 
3. If 𝑞1(𝑡) and 𝑞2(𝑡) are functions and 𝑐1 and 𝑐2 are constants then 𝑞(𝑡) = 𝑐1𝑞1 + 𝑐2𝑞2 is a 
superposition of 𝑞1 and 𝑞2. 
We will also say that 𝑞 = 𝑐1𝑞1 + 𝑐2𝑞2 is a linear combination of 𝑞1 and 𝑞2. 
Suppose we have the first-order linear differential equation 

𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡). (4) 

We will often call the 𝑞(𝑡) the input. We will then call 𝑦(𝑡) the output of the system to 
the input 𝑞. Of course, 𝑦(𝑡) is nothing more than the solution to the DE. In Topic 3 we will 
expand on the notions of input and output. 
The superposition principle is easy but extremely important! It concerns the linear DE in 
Equation 4 with different inputs 𝑞 = 𝑞1, 𝑞 = 𝑞2 and 𝑞 = 𝑐1𝑞1 + 𝑐2𝑞2. 
Superposition principle. If

𝑦1 is a solution of the DE 𝑦′ + 𝑝(𝑡)𝑦 = 𝑞1(𝑡)
and 

𝑦2 is a solution of the DE 𝑦′ + 𝑝(𝑡)𝑦 = 𝑞2(𝑡)
then for any constants 𝑐1, 𝑐2 we have 

𝑐1𝑦1 + 𝑐2𝑦2 is a solution of the DE 𝑦′ + 𝑝(𝑡)𝑦 = 𝑐1𝑞1(𝑡) + 𝑐2𝑞2(𝑡). 
Important note: Notice that the coefficient 𝑝(𝑡) is the same for all the DEs. 
In words the superposition principle says: For first-order linear DEs 

If the input 𝑞1 has output 𝑦1 and the input 𝑞2 has output 𝑦2 then the input 
𝑐1𝑞1 + 𝑐2𝑞2 has output 𝑐1𝑦1 + 𝑐2𝑦2 

An even simpler formulation is: 
For linear DEs superposition of inputs gives superposition of outputs. 

2.4.1 Proof of the superposition principle 

First note that saying 𝑦1 is a solution to 𝑦′ + 𝑝𝑦 = 𝑞1 simply means 𝑦1
′ + 𝑝𝑦1 = 𝑞1 and 

likewise for 𝑦2. 
To prove the superposition principle we have to verify that 𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 is indeed a 
solution to 𝑦′ + 𝑝𝑦 = 𝑐1𝑞1 + 𝑐2𝑞2. We do this by substitution: 

𝑦′ + 𝑝𝑦 = (𝑐1𝑦1 + 𝑐2𝑦2)′ + 𝑝(𝑐1𝑦1 + 𝑐2𝑦2) 

= 𝑐1𝑦1
′ + 𝑐2𝑦2

′ + 𝑐1𝑝𝑦1 + 𝑐2𝑝𝑦2 

= 𝑐1(𝑦1
′ + 𝑝𝑦1) + 𝑐2(𝑦2

′ + 𝑝𝑦2) 

= 𝑐1𝑞1 + 𝑐2𝑞2. 
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The last equality follows because of our assumption that 𝑦1
′ + 𝑝𝑦1 = 𝑞1 and the similar 

assumption for 𝑦2. Now, looking at the first and last terms in this string of equalities we 
see that we have proved the superposition principle. 
Example 2.5. Solve the linear DE 𝑦′ + 2𝑦 = 2 + 4𝑡. 
Solution: You can easily check that 

𝑦′ + 2𝑦 = 1 has solution 𝑦1 = 1/2 + 𝐶1𝑒−2𝑡 

𝑦′ + 2𝑦 = 𝑡 has solution 𝑦2 = 𝑡/2 − 
1
4 

+ 𝐶2𝑒−2𝑡 

The input 2 + 4𝑡 is a linear combination of the inputs 1 and 𝑡, so by the superposition 
principle the solution to the DE is a linear combination of the outputs 𝑦1, 𝑦2 

𝑦 = 2𝑦1 + 4𝑦2 = 1 + 2𝐶1𝑒−2𝑡 + 2𝑡 − 1 + 4𝐶2𝑒−2𝑡 = 2𝑡 + 𝐶𝑒−2𝑡. 

In the last equality we combined all of the coefficients of 𝑒−2𝑡 into a single symbol 𝐶. 

2.5 An extended example 

Example 2.6. (Heat diffusion.) I put my root beer in a cooler, but after a while it still 
gets warm. Let’s model its temperature using a differential equation. 
Solution: First we need to name the function that measures the temperature: 

Let 𝑥(𝑡) = root beer temperature at time 𝑡. 
The simplest model of this situation is Newton’s law of cooling. It says that the rate 
the temperature of the root beer changes is proportional to the difference between the 
temperatures of the root beer and its environment. In symbols, let 𝐸(𝑡) be the temperature 
of the environment, then (using ‘dot’ notation) 

̇𝑥(𝑡) = −𝑘(𝑥(𝑡) − 𝐸(𝑡)), 

where 𝑘 is the constant of proportionality. Rearranging this equation it becomes 

̇𝑥 + 𝑘𝑥 = 𝑘𝐸(𝑡). 

This is a first-order linear DE in standard form! 

Example 2.7. Suppose the environment in the previous example is 𝐸(𝑡) = 60 + 6𝑡, where
𝑡 is the time in hours from 10 AM. (So the temperature is rising linearly.) To be concrete, 
let’s also assume 𝑥(0) = 32∘F and 𝑘 = 1/3. If I want to drink my root beer before it reaches 
60∘F how much time do I have? 

Solution: Our strategy will be to first solve the initial value problem to find 𝑥(𝑡) and then 
use this to determine at what time 𝑥(𝑡) will be 60. 
From the previous example we know that 

̇ so, 𝑥 + 𝑘𝑥 = 60𝑘 + 6𝑘𝑡. 𝑥 + 𝑘𝑥 = 𝑘𝐸 ̇ 

We could apply the variation of parameters formula directly to this, but the superposition 
principle will do all the work for us. The input 60𝑘+6𝑘𝑡 is a superposition of the inputs from 
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Examples 2.3 and 2.4. Therefore, the solution (output) is a superposition of the outputs 
from those examples. We know: 
From Example 2.3: ̇ .𝑥 + 𝑘𝑥 = 𝑘 has solution 1 + 𝐶𝑒−𝑘𝑡 

From Example 2.4: ̇ .𝑥 + 𝑘𝑥 = 𝑘𝑡 has solution 𝑡 − 1/𝑘 + 𝐶𝑒−𝑘𝑡 

Therefore, ̇𝑥 + 𝑘𝑥 = 60𝑘 + 6𝑘𝑡 has solution 

𝑥(𝑡) = 60(1 + 𝐶𝑒−𝑘𝑡) + 6(𝑡 − 1/𝑘 + 𝐶𝑒−𝑘𝑡) = 60 + 6𝑡 − 6/𝑘 + 𝐶�̃� −𝑘𝑡. 

Here we combined all the coefficients of 𝑒−𝑘𝑡 into one constant 𝐶 .̃ Now we set 𝑘 = 1/3 to 
get 

𝑥(𝑡) = 42 + 6𝑡 + 𝐶�̃� −𝑡/3. 
Finally, we use the initial condition to find 𝐶 .̃ 

𝑥(0) = 42 + 𝐶 ̃ = 32, so 𝐶 ̃ = −10. 

We’ve found the temperature of the root beer in my cooler is 

𝑥(𝑡) = 42 + 6𝑡 − 10𝑒−𝑡/3. 

To answer the question we need to compute when 𝑥(𝑡) = 60. Probably the easiest way to 
do this is to plot 𝑥(𝑡) and see where it crosses 𝑥 = 60. We see this is at about 𝑡 = 3.5. I 
have until about 1:30 pm to enjoy my drink. 
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Plot of 𝑥(𝑡): 𝑥(𝑡) = 60 at approximately 𝑡 = 3.5. 
Remark redux: We hasten to point out once again that later we will learn faster and nicer 
techniques for solving equations like this. Techniques involving integration are generally last 
resorts, to be used when all else has failed. 

2.6 Nonlinear equations don’t satisfy the superposition principle 

The superposition principle is the main reason we focus on linear differential equations. 
As we have seen in a few examples, it allows us to break the input of a linear equation 
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into pieces and construct the full solution out of the solutions to the pieces. In fact, the 
superposition principle only holds for linear DEs. We will illustrate this by showing it does 
not hold for a given nonlinear DE. 
Example 2.8. Show that superposition does not hold for the nonlinear equation 

𝑦′ + 𝑦2 = 𝑞(𝑡). 

Solution: We can do this abstractly without actually solving the DE! Suppose 𝑦1
′ +𝑦1

2 = 𝑞1 

and 𝑦2
′ + 𝑦2

2 = 𝑞2. If superposition held for this equation then we would have 

(𝑦1 + 𝑦2)′ + (𝑦1 + 𝑦2)2 = 𝑞1 + 𝑞2. 

But it’s easy to see this equation is not true: 

(𝑦1 + 𝑦2)′ + (𝑦1 + 𝑦𝑦)2 = 𝑦1
′ + 𝑦2

′ + 𝑦1
2 + 2𝑦1𝑦2 + 𝑦2

2 

= 𝑦1 + 𝑦1
2 + 𝑦2 + 𝑦2

2 + 2𝑦1𝑦2 

= 𝑞1 + 𝑞2 + 2𝑦1𝑦2 

≠ 𝑞1 + 𝑞2. 

What went wrong here? One way to say it is that superposition works for linear equations 
because the terms in the sum do not really interact. That is, in expressions like (𝑦1 + 𝑦2)′ = 
𝑦1

′ + 𝑦2
′ and 𝑝(𝑦1 + 𝑦2) = 𝑝𝑦1 + 𝑝𝑦2 the effect on 𝑦1 is exactly what it would be if 𝑦2 was 

not there. On the other hand in the expression (𝑦1 + 𝑦2)2 = 𝑦1
2 + 2𝑦1𝑦2 + 𝑦2

2 the term 2𝑦1𝑦2 

represents an interaction between 𝑦1 and 𝑦2. That is, the effect of squaring on 𝑦1 is affected 
by the presence of 𝑦2. 

2.7 Definite integral solutions to linear initial value problems 

Consider the linear IVP 
𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡); 𝑦(0) = 𝑦0. 

We can solve this equation by two methods. 
Method 1: Use the variation of parameters formula in Equation 3 to find the general 
solution and then use the initial condition to solve for 𝐶. 
Method 2: Use definite integrals in the variation of parameters formula to give the solution 
directly. We show how this is done: Take 

𝑝(𝑢) 𝑑𝑢 𝑡0𝑦ℎ(𝑡) = 𝑒− ∫𝑡 

. 

(This is chosen so that 𝑦ℎ(0) = 1.) Then 

𝑡 𝑞(𝑢) 𝑦(𝑡) = 𝑦ℎ(𝑡) ∫ 𝑦ℎ(𝑢) 
𝑑𝑢 + 𝑦0 ⋅ 𝑦ℎ(𝑡).

0 

Notes. 1. This form of the solution is well-suited for numerical computation. 
2. We stated the problem with initial condition at 𝑡 = 0, but we could have been more 
general and take 𝑦(𝑡0) = 𝑦0. 
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Here is an example that illustrates both these points. Note that we don’t compute the 
integral exactly, but we can still use the computer to compute approximate values of the 
solution. 
Example 2.9. Solve the initial value problem 𝑥2𝑦′ + 𝑥𝑦 = sin 𝑥; 𝑦(1) = 𝑦0. 
Solution: First we need to convert the DE to standard form: 

sin 𝑥 𝑦′ + 1 .𝑥𝑦 = 𝑥2 

The homogeneous solution is 
1𝑦ℎ = 𝑒− ∫𝑥 
𝑢 𝑑𝑢 

𝑥
1 .1 = 

So the variation of parameters formula gives 

𝑥 1 sin 𝑢 𝑦 = 𝑑𝑢 + 
𝑦0

𝑥 ∫ 𝑢 𝑥 . 
1 

There is no closed form for the integral, but we can still use calculus to know a lot about 
this integral and to compute its value to any desired degree of accuracy. Here is a plot we 
made in Matlab (actually Octave) using its numerical integration function quad(). The 
initial value is 𝑦0 = 1. 

1 sin 𝑢 Plot of 𝑦 = 𝑥 (∫1
𝑥 

𝑢 𝑑𝑢 + 1) 

2.8 Proof of variation of parameters formula 

(You are not responsible for knowing this yet. We will come back to it when we study 
systems of linear equations.) 

One proof that the Equation 3 solves the DE in Equation 2 is by substitution. It’s not 
difficult to plug the formula for 𝑦(𝑡) into the differential equation and check that it works. 
Of course, this is not a very satisfying proof because it fails to answer the question of how 
we might arrive at such a formula in the first place. Here is another proof that gives more 
insight. 
First we solve the homogeneous equation 

𝑦′ + 𝑝(𝑡)𝑦 = 0. 

This equation is separable and easy to solve. We do the algebra quickly: The equation can 
be written as 𝑦′ = −𝑝(𝑡)𝑦. Separating variables gives: 𝑑𝑦/𝑦 = −𝑝(𝑡)𝑑𝑡. Integrating gives: 



2 LINEAR SYSTEMS: INPUT-RESPONSE MODELS 9 

ln(𝑦) = − ∫ 𝑝(𝑡) 𝑑𝑡+𝐶. Now exponentiation gives the general solution to the homogeneous 

equation: 
𝑦(𝑡) = 𝐶𝑒− ∫ 𝑝(𝑡) 𝑑𝑡 

To avoid writing integrals repeatedly we let 𝑦ℎ(𝑡) = 𝑒− ∫ 𝑝(𝑡) 𝑑𝑡. So the general homogeneous 
solution is 𝑦(𝑡) = 𝐶𝑦ℎ(𝑡). 
Now consider the inhomogeneous equation 

𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡). 

This is not separable, so we need to do something else. The philosophy behind variation of 
parameters is to use what we already know. What we know is the homogeneous solution, 
so we guess that the solution is of the form 

𝑦(𝑡) = 𝑣(𝑡)𝑦ℎ(𝑡). 

What we’ve done is to turn the parameter 𝐶 in the homogeneous solution into a variable 𝑣 
which depends on 𝑡. Hence the name variation of parameters. 
Once we’ve guessed a solution, we substitute it into the inhomogeneous equation to see if 
we can solve for a 𝑣(𝑡) that works. The left-hand side of the inhomogeneous equation is 

𝑦′ + 𝑝(𝑡)𝑦 = (𝑣(𝑡)𝑦ℎ(𝑡))′ + 𝑝(𝑡)𝑣(𝑡)𝑦ℎ(𝑡) 

= 𝑣′𝑦ℎ + 𝑣𝑦ℎ
′ + 𝑝𝑣𝑦ℎ 

= 𝑣′𝑦ℎ + 𝑣(𝑦ℎ
′ + 𝑝𝑦ℎ) 

= 𝑣′𝑦ℎ (since 𝑦ℎ
′ + 𝑝𝑦ℎ = 0). 

Equating the left-hand side with the right-hand side we have 𝑣′(𝑡)𝑦ℎ(𝑡) = 𝑞(𝑡). This is easy 
to solve for 𝑣(𝑡): 

𝑣′(𝑡) = 𝑞(𝑡)/𝑦ℎ(𝑡) ⇒ 𝑣(𝑡) = ∫ 
𝑞(𝑡)
𝑦ℎ(𝑡) 

𝑑𝑡 + 𝐶. 

Now we put this back into our definition of 𝑦(𝑡) 

𝑦(𝑡) = 𝑣(𝑡)𝑦ℎ(𝑡) = 𝑦ℎ(𝑡) (∫ 
𝑞(𝑡) 

𝑦ℎ(𝑡) 
𝑑𝑡 + 𝐶 𝑦ℎ(𝑡).𝑦ℎ(𝑡) 

𝑑𝑡 + 𝐶) = 𝑦ℎ(𝑡) ∫ 
𝑞(𝑡) 

This is the variation of parameters formula we wanted to derive. 
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