
ES.1803 Topic 20 Notes
Jeremy Orloff 

20 Step and delta functions 

20.1 Goals 

1. Be able to define the unit step and unit impulse functions and give their properties. 

2. Be able to explain why the unit step and unit impulse functions are idealized versions 
of real physical phenomena. 

3. Be able to compute the generalized derivative of a function with jump discontinuities. 

4. Be able to compute integrals involving delta functions. 

5. Be able to solve DEs with impulses as input. 

6. Be able to find the pre and post-initial conditions for a physical model with impulsive 
input. 

20.2 The unit step function 

20.2.1 Definition 

Let’s start with the definition of the unit step function, 𝑢(𝑡): 

for 𝑡 < 0 𝑢(𝑡) = {0 

1 for 𝑡 > 0 

We do not define 𝑢(𝑡) at 𝑡 = 0. Rather, at 𝑡 = 0 we think of it as in transition between 0 
and 1. 
It is called the unit step function because it takes a unit step at 𝑡 = 0. It is sometimes 
called the Heaviside function. The graph of 𝑢(𝑡) is simple. 

𝑡 

1 
𝑢(𝑡) 

We will use 𝑢(𝑡) as an idealized model of a natural system that goes from 0 to 1 very quickly. 
In reality it will make a smooth transition, such as the following. 

𝑡 

1 

Figure 1. 𝑢(𝑡) is an idealized version of this curve 

1 
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But, if the transition happens on a time scale much smaller than the time scale of the 
phenomenon we care about, then the function 𝑢(𝑡) is a good approximation. It is also much 
easier to deal with mathematically. 
One of our main uses for 𝑢(𝑡) will be as a switch. It is clear that multiplying a function
𝑓(𝑡) by 𝑢(𝑡) gives 

for 𝑡 < 0 𝑢(𝑡)𝑓(𝑡) = {0 

𝑓(𝑡) for 𝑡 > 0. 
We say the effect of multiplying by 𝑢(𝑡) is that for 𝑡 < 0 the function 𝑓(𝑡) is switched off 
and for 𝑡 > 0 it is switched on. 

20.2.2 Integrals of 𝑢′(𝑡) 

From calculus we know that 

∫ 𝑢′(𝑡) 𝑑𝑡 = 𝑢(𝑡) + 𝑐 and ∫
𝑏 

𝑢′(𝑡) 𝑑𝑡 = 𝑢(𝑏) − 𝑢(𝑎). 
𝑎 

For example: 

∫
5 

𝑢′(𝑡) 𝑑𝑡 = 𝑢(5) − 𝑢(−2) = 1,
−2 

∫
3 

𝑢′(𝑡) 𝑑𝑡 = 𝑢(3) − 𝑢(1) = 0,
1 

∫
−3 

𝑢′(𝑡) 𝑑𝑡 = 𝑢(−3) − 𝑢(−5) = 0. 
−5 

In fact, the following rule for the integral of 𝑢′(𝑡) over any interval is obvious 

𝑏 if 0 is inside the interval (𝑎, 𝑏) ∫ 𝑢′(𝑡) = {1 (1)
𝑎 0 if 0 is outside the interval [𝑎, 𝑏]. 

Note: If one of the limits is 0, we throw up our hands and refuse to do the integration. 

20.2.3 0− and 0+ 

Let 0− be infinitesimally to the left of 0 and 0+ infinitesimally to the right of 0. That is, 

0− < 0 < 0+. 

For a function, 𝑓(0−) is defined as the left hand limit at 0 or, equivalently, the limit from 
below at 0, provided this limit exists. Likewise, 𝑓(0+) is the right hand limit or the limit 
from above. 

𝑓(0−) = lim 𝑓(𝑡) 𝑓(0+) = lim 𝑓(𝑡) 
𝑡↑0 𝑡↓0 
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Here are some examples of integrals of 𝑢′ that involve 0− and 0+: 

∫
0+ 

𝑢′(𝑡) 𝑑𝑡 = 1 (because −∞ < 0 < 0+),
−∞ 

∫
0− 

𝑢′(𝑡) 𝑑𝑡 = 0 (because −∞ < 0− < 0),
−∞ 

∫
0+ 

𝑢′(𝑡) 𝑑𝑡 = 1 (because 0− < 0 < 0+). 
0− 

20.3 Preview of generalized functions and derivatives 

Of course 𝑢(𝑡) is not a continuous function, so, in the 18.01 sense, its derivative at 𝑡 = 0 
does not exist. Nonetheless, we saw that we could make sense of the integrals of 𝑢′(𝑡). So, 
rather than throw it away, we call 𝑢′(𝑡) the generalized derivative of 𝑢(𝑡). You can’t do 
everything with 𝑢′(𝑡) you can do with an ordinary function, but we’ll see that it can go 
anywhere we have an input function in 18.03. 

20.4 The delta function (unit impulse) 

20.4.1 The definition and mathematics of the delta function 

Let’s delve a little deeper into 𝑢′(𝑡). It’s clear 𝑢′(𝑡) = 0 if 𝑡 ≠ 0. At 𝑡 = 0 the curve is 
vertical, so the slope is infinite, i.e., 𝑢′(0) = ∞. (If you think of 𝑢(𝑡) as an idealized version 
of the curve in Figure 1, then we would say the derivative near 0 gets very large.) We define 

𝛿(𝑡) = 𝑢′(𝑡) 

and call it the delta function or the Dirac delta function or the unit impulse function. We 
have seen the following properties of 𝛿(𝑡): 

if 𝑡 ≠ 0 1. 𝛿(𝑡) = {0 

∞ if 𝑡 = 0. 

2. ∫ 𝛿(𝑡) 𝑑𝑡 = 𝑢(𝑡) and ∫
∞ 

𝛿(𝑡) 𝑑𝑡 = 1. 
−∞ 

Based on Property 1, we ‘graph’ 𝛿(𝑡) as an infinite spike at the origin and 0 everywhere 
else. The integrals show that the ‘area’ under this graph equals 1 and it is all concentrated 
at the origin. 

𝑡 0 

𝛿(𝑡) 

𝑡 0 𝑎 

𝛿(𝑡 − 𝑎) 
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We also show 𝛿(𝑡 − 𝑎) which is just 𝛿(𝑡) shifted to the right. 

20.5 The non-idealized delta function 

Just like the unit step function, the 𝛿 function is really an idealized view of nature. In 
reality, a delta function is nearly a spike near 0, which goes up and down on a time interval 
much smaller than the scale we are working on. The integral, i.e., area under the curve, is 
always 1. Its graph might actually look something like 

𝑡 
Figure 2. Non-idealized delta function; area under the graph = 1. 

The total amount input is still the integral (see Section 20.7 below), or, in geometric terms, 
the area under the graph. A unit impulse is defined so the area is 1. Later we will consider 
𝛿 as input to a physical system. 

20.6 Delta functions are your friend 

20.6.1 Integrals with the delta function 

Recall how painful integration could be. In contrast, integrals with delta functions are 
always easy and involve no techniques of integration. 
Suppose we scale 𝛿(𝑡): the integrals are just scaled. 

5 −3 0+ ∞
∫ 3𝛿(𝑡) 𝑑𝑡 = 3, ∫ 3𝛿(𝑡) 𝑑𝑡 = 0, ∫ 3𝛿(𝑡) 𝑑𝑡 = 3, ∫ 3𝛿(𝑡) 𝑑𝑡 = 0. 

−5 −5 0− 0+ 

The integral ∫𝑎
𝑏 𝑓(𝑡)𝛿(𝑡) 𝑑𝑡 is also easy. If 𝑓(𝑡) is continuous at 𝑡 = 0 then 

𝑏 if (𝑎, 𝑏) contains 0 ∫ 𝑓(𝑡)𝛿(𝑡) 𝑑𝑡 = {𝑓(0) 

𝑎 0 if [𝑎, 𝑏] does not contain 0. 

That is, integrating against 𝛿(𝑡) just amounts to evaluating 𝑓(𝑡) at 𝑡 = 0. 
Note 1. If one of the endpoints 𝑎 or 𝑏 is 0, the integral cannot be evaluated, so we just 
throw up our hands and refuse to do it. 
Note 2. Technicality: We must have 𝑓(𝑡) continuous at 𝑡 = 0. 

20.6.2 Justification of the formula for integrating with delta functions 

We should start by admitting that, in formal mathematic, this is formula is given as the 
definition of 𝛿(𝑡), so our arguments will just go to show that it is a reasonable definition. 
We’ll do this in three ways. 
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Quick reason: 𝛿(𝑡) is 0 everywhere except 𝑡 = 0, So 𝑓(𝑡)𝛿(𝑡) is 0 for all 𝑡 ≠ 0 and at
𝑡 = 0 it just scales the delta function by 𝑓(0). That is, 𝑓(𝑡)𝛿(𝑡) = 𝑓(0)𝛿(𝑡). 
Reason 1. Since we can interpret the integral as area, we need to show that the ‘area’ under 
𝑓(𝑡)𝛿(𝑡) is 𝑓(0). Figure 2 (above) shows a tall, thin curve near 𝑡 = 0 which approximates 
𝛿(𝑡). Since 𝑓(𝑡) is continuous we know that 𝑓(𝑡) ≈ 𝑓(0) near 𝑡 = 0. Thus 𝑓(𝑡)𝛿(𝑡) is 
approximated by the graph in the Figure 2 scaled by 𝑓(0). Finally, since the area under 
the curve in Figure 2 is one, if we scale it by 𝑓(0) it will have area equal to 𝑓(0). As the 
graph in Figure 2 gets narrower and taller it goes to the graph of 𝛿(𝑡). As this happens, the 
approximation we just made will become exact, i.e., as we wanted to show, the area under 
the 𝑓(𝑡)𝛿(𝑡) = 𝑓(0). 
Reason 2. This is a direct argument using integration by parts. First, since 𝛿(𝑡) = 0 for 

𝑡 ≠ 0 the integral ∫𝑎
𝑏 𝑓(𝑡)𝛿(𝑡) 𝑑𝑡 must be zero for any interval [𝑎, 𝑏] not containing 0. Next, 

suppose 𝑎 < 0 < 𝑏, then we get 

𝑏 𝑏 

∫ 𝑓(𝑡)𝛿(𝑡) 𝑑𝑡 = ∫ 𝑓(𝑡)𝑢′(𝑡) 𝑑𝑡 (since 𝛿 = 𝑢′ )
𝑎 𝑎 

𝑏 

= 𝑓(𝑡)𝑢(𝑡)|𝑏𝑎 − ∫ 𝑓′(𝑡)𝑢(𝑡) 𝑑𝑡 (integration by parts) 
𝑎 

Now, since 𝑢(𝑏) = 1, 𝑢(𝑎) = 0 and 𝑢(𝑡) = 0 for 𝑡 < 0 this becomes 

= 𝑓(𝑏) − ∫
𝑏

𝑓′(𝑡) 𝑑𝑡 
0 

= 𝑓(𝑏) − 𝑓(𝑡)|𝑏 
0 

= 𝑓(𝑏) − 𝑓(𝑏) + 𝑓(0) 

= 𝑓(0) 

Comparing the first and last expressions in this long sequence of steps, we’ve shown the 
result. 
Important note: For continuous 𝑓(𝑡), the formula 

𝑓(𝑡)𝛿(𝑡) = 𝑓(0)𝛿(𝑡) 

is extremely useful. Your life will be much easier if you learn to replace 𝑓(𝑡)𝛿(𝑡) by 𝑓(0)𝛿(𝑡). 

20.6.3 Shifting by a 

If we shift by 𝑎, we have ∫
∞ 

𝑓(𝑡)𝛿(𝑡 − 𝑎) = 𝑓(𝑎). More generally: 
−∞ 

𝑑 if (𝑐, 𝑑) contains a∫ 𝑓(𝑡)𝛿(𝑡 − 𝑎) 𝑑𝑡 = {𝑓(𝑎) 

𝑐 0 if [𝑐, 𝑑] does not contain a. 

Important note: Just as for 𝛿(𝑡), for continuous 𝑓(𝑡) we have, 𝑓(𝑡)𝛿(𝑡 − 𝑎) = 𝑓(𝑎)𝛿(𝑡 − 𝑎). 
You should learn to make this replacement. 
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Example 20.1. (Practice with 𝛿.) Quickly cover up the answers on the right and try to 
evaluate each of the integrals on the left. 

∫
3 

𝛿(𝑡)2𝑒4𝑡2 𝑑𝑡 = 2, (evaluate 2𝑒4𝑡2 at 𝑡 = 0)
−1 

∫
3 

𝛿(𝑡)2𝑒4𝑡2 𝑑𝑡 = 0, (0 is not in [1,3]) 
1 

∫
3 

𝛿(𝑡)2𝑒4𝑡2 𝑑𝑡 = 2, (evaluate 2𝑒4𝑡2 at 𝑡 = 0)
0− 

∫
∞ 

𝛿(𝑡)2𝑒− tan2(𝑡3) 𝑑𝑡 = 2, (evaluate 2𝑒− tan2(𝑡3) at 𝑡 = 0)
0− 

3
∫ 𝛿(𝑡 − 2)2𝑒4𝑡2 𝑑𝑡 = 2𝑒16, (evaluate 2𝑒2𝑒4𝑡2 

at 𝑡 = 2)
−1 

∫
5 

𝛿(𝑡 − 2)2𝑒4𝑡2 𝑑𝑡 = 0, (2 is not in [3,5]) 
3 

3
∫ 𝛿(𝑡 − 2)2𝑒4𝑡2 𝑑𝑡 = 2𝑒16 (evaluate 2𝑒2𝑒4𝑡2 

at 𝑡 = 2),
0− 

∫
∞ 

𝛿(𝑡 − 2)2𝑒− tan2(𝑡3) 𝑑𝑡 = 2𝑒− tan2(8) (evaluate 2𝑒− tan2(𝑡3) at 𝑡 = 2).
0− 

20.7 The physical interpretation of delta functions as a unit impulse 

In general, we will be using 𝛿 functions as the input to LTI systems. So, in this subsection, 
we want to explore what this means. Our goal is to understand what is meant by an impulse 
and to see that 𝛿(𝑡) can be thought of as an (idealized) unit impulse. 
Example 20.2. Consider the rate equation ̇ = 𝑓(𝑡). To be specific, assume 𝑥 is𝑥 + 𝑘𝑥 
in kilograms of a radioactive substance and 𝑡 is in hours. This is a rate equation and the 
derivative 𝑥̇ and the input 𝑓(𝑡) are rates, in units of kg/hour. We then have that the total 

amount of substance input from time 0− to time 𝑡 is ∫
𝑡 

𝑓(𝜏) 𝑑𝜏 . 
0− 

Consider the following possible inputs 𝑓(𝑡), shown graphically as box functions. 

𝑡 

𝑓1(𝑡) kg/hour 

2 

1/2 
𝑡 

𝑓2(𝑡) kg/hour 

4 

1/4 
𝑡 

𝑓3(𝑡) kg/hour 

6 

1/6 

Look at the input function 𝑓1(𝑡) in the leftmost figure. It is only nonzero in the interval 
[0, 1/2] during which time it inputs at a constant rate of 2 kg/hour. The total amount input 



20 STEP AND DELTA FUNCTIONS 7 

over that time is 
1/2

∫ 𝑓1(𝑡) 𝑑𝑡 = 1 kg.
0 

The function 𝑓2 has a higher rate, but acts for a shorter time. The total amount it inputs 
over time is also 1 kg. The function 𝑓3 is similar: it acts for even a shorter time, but also 
inputs a total of 1 kg. 
If 𝑥(0) = 𝑥0 kg, then over the interval [0, 1/2] some of the original matter and some of what 
is added by 𝑓1(𝑡) will decay away. So we’ll end with something less than 𝑥0 + 1 kg. 
Likewise with 𝑓2(𝑡), we add a total of 1 kg over the interval [0, 1/4]. Again, there will be 
decay over the interval, so we’ll have less than 𝑥0 + 1 at the end of the interval. But, since 
the interval is shorter, there will be less decay and the amount at the end will be closer to 
𝑥0 + 1 than with 𝑓1. 
If we continue to shorten the time interval in which we input a total of 1 kg, then, in the 
limiting case, we will dump 1 kg in all at once. In this case, there will be no time for 
decay and the amount will jump instantaneously from 𝑥0 to 𝑥0 + 1, after which it will start 
decaying. This instantaneous input is called an impulse; an instantaneous input of one unit 
is called a unit impulse. In a first-order system, an impulse results in an instantaneous 
jump in the amount of 𝑥. 
Note, as the time interval gets smaller, the rate needed to add a total of 1 kg must increase. 
In the limit, when 1 kg is added all at once, the rate must be infinite. 
It is worth acknowledging that, in a real physical system, we can’t really have an ideal 
impulse with an infinite rate over an infinitesimal time. But we can come close by having a 
large rate over a very small time. As long as the time interval is tiny compared to the decay 
rate, the idealized impulse is a good model. For example, if we add 1 kg of radioactive 
material in a few seconds, while it decays on a scale of hours, then so little decays while 
we’re adding it, that it is reasonable to model it as an impulse over an infinitesimal time 
interval. 
Claim. Let 𝑢ℎ(𝑡) be the box function of width ℎ and height 1/ℎ. Then the integral 
∫∞ 

−∞ 
𝑢ℎ(𝑡) 𝑑𝑡 = 1 and 

lim 𝑢ℎ(𝑡) = 𝛿(𝑡). 
ℎ→0 

That is, as the boxes get narrower and taller they become the 𝛿 function. 
Proof. We saw above that 𝛿(𝑡) was described by two properties 

if 𝑡 ≠ 0 1. 𝛿(𝑡) = {0 

∞ if 𝑡 = 0. 

2. ∫ 𝛿(𝑡) 𝑑𝑡 = 𝑢(𝑡), ∫
∞ 

𝛿(𝑡) 𝑑𝑡 = 1. 
−∞ 

The picture below illustrates that lim 𝑢ℎ(𝑡) satisfies property 1. Because all the integrals 
ℎ→0 

of 𝑢ℎ(𝑡) = 1, the second property is also true of the limit. Because the limit satisfies both 
properties it must equal 𝛿(𝑡). 
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3 
2 ℎ → 0 

𝑡 𝑡 𝑡 𝑡 1 1 1
1 2 3 

A sequence of box functions 𝑢ℎ(𝑡) limiting to 𝛿(𝑡). 

Summary. Here’s a summary of what we’ve done in this subsection. 

1. If 𝑓(𝑡) is an input rate. The total amount input over [𝑎, 𝑏] is ∫
𝑏 

𝑓(𝑡) 𝑑𝑡. 
𝑎 

2. A unit impulse adds a total of 1 unit in one instant. 

3. If the impulse is at 𝑡 = 𝑡0 then all the input happens at 𝑡 = 𝑡0. 

4. We can visualize an impulse as the limit of a sequence of boxes as they get narrower 
and taller. (Also, look back at the non-idealized delta function in Figure 2: an impulse 
is the limit of any spike function as it gets narrower and taller.) 

5. A unit impulse is modeled by 𝛿(𝑡). 

20.8 Solving DES: pre and post-initial conditions. 

The main lesson in this section is that for an 𝑛th order equation a delta function, input 
causes an instantaneous jump in the (𝑛 − 1)st derivative of the output. Once we deal with 
that, we can use our standard techniques to solve the DE. 
Because an impulse causes an instantaneous jump in some value, we have to consider the 
conditions just before and just after the impulse. Assume the impulse occurs at 𝑡 = 0, then: 
At 𝑡 = 0−, the conditions are pre-initial conditions. 
At 𝑡 = 0+, the conditions are post-initial conditions. 

20.8.1 Impulses as input to first-order systems 

Example 20.3. Solve ̇𝑥 + 𝑘𝑥 = 𝛿(𝑡) with rest initial conditions. 
Solution: This is a first-order exponential decay system. The unit impulse at 𝑡 = 0 causes 
an instantaneous jump of 1 in the value of 𝑥. 
On 𝑡 < 0: The DE is always ̇𝑥 + 𝑘𝑥 = 𝛿(𝑡). But on this interval 𝛿(𝑡) = 0, so we can simplify 
the DE to 

̇𝑥 + 𝑘𝑥 = 0. 
Since 𝑡 < 0 our initial conditions should use 0−: 𝑥(0−) = 0. 
Solving the equation we get: 𝑥(𝑡) = 𝑐𝑒−𝑘𝑡. 
Using the initial condition we get: 𝑥(0−) = 𝑐 = 0. 

So, on 𝑡 < 0, 𝑥(𝑡) = 0 . (This should have been obvious to us!) 
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On 𝑡 > 0: The DE is always ̇𝑥+𝑘𝑥 = 𝛿(𝑡). But, on this interval 𝛿(𝑡) = 0, so we can simplify 
the DE to 

̇𝑥 + 𝑘𝑥 = 0. 
Since 𝑡 > 0 our initial conditions should use 0+: The pre-initial condition is 𝑥(0−) = 0. 
The effect of the unit impulse is to cause the value of 𝑥 to jump by 1 at 𝑡 = 0. That is, 
𝑥(0+) = 1. 
Solving the equation we get: 𝑥(𝑡) = 𝑐𝑒−𝑘𝑡. 

Using the initial condition we get: 𝑥(0+) = 𝑐 = 1. So, on 𝑡 > 0, 𝑥(𝑡) = 𝑒−𝑘𝑡 . 

The full solution is 
for 𝑡 < 0 𝑥(𝑡) = {0 

𝑒−𝑘𝑡 for 𝑡 > 0. 

Here is the graph. Note the jump at 𝑡 = 0, followed by exponential decay. 

𝑡 

𝑥 

1 

Response from rest to input = 𝛿(𝑡). 

Key: We highlight one key thing to remember in the example above: 
In each of the cases 𝛿(𝑡) = 0. That is, when 𝑡 < 0 we have 𝛿(𝑡) = 0. Likewise, when 𝑡 > 0 
we have 𝛿(𝑡) = 0. 

20.8.2 Impulses as input to second-order systems 

Here will give physical reasons for the jump an impulse causes in the first derivative of a 
second-order system. Later, in Section 20.11, we’ll give algebraic reasons for the jump in a 
system of any order. 
Now let’s consider the second-order system 

𝑚 ̈ ̇ (2)𝑥 + 𝑏𝑥 + 𝑘𝑥 = 𝑓(𝑡), 

with input 𝑓(𝑡) and output 𝑥(𝑡). To be specific, we’ll think of this as a spring-mass-damper 
system with 𝑥 in meters, 𝑡 in seconds, and 𝑚 in kg. 
We need to think about the units on 𝑓(𝑡). It’s clear enough that they are in Newtons, but 

what are the units of the total input ∫
𝑏 

𝑓(𝑡) 𝑑𝑡? Newtons can be written as 
𝑎 

kg⋅ m/sec momentum Newton = = . sec time 

That is, force changes momentum over time. We see that the total input has units of 
momentum. 
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Following this idea, we see that a unit impulse to this second-order system is a sudden blow, 
i.e., a large force acting with a short duration, that causes the momentum to jump by one 
unit. 
Example 20.4. Suppose a unit impulse is applied to the system in Equation 2. If the 
system is at rest before time 0, find the pre- and post-initial conditions. 
Solution: Since the system is initially at rest the pre-initial conditions are 

𝑥(0−) = 0 and 𝑥(0̇ −) = 0. 

Since, for this system, the impulse causes a one unit jump in momentum at 𝑡 = 0 we have, 
at 𝑡 = 0+, the momentum 𝑚𝑥(0̇ +) = 1, i.e., the post-initial conditions 

𝑥(0+) = 0 and 𝑥(0̇ +) = 1/𝑚. 

Example 20.5. Assume rest initial conditions and solve the equation 

2 ̈ ̇𝑥 + 7𝑥 + 3𝑥 = 𝛿(𝑡). 

Solution: Following Example 20.4, the post-initial conditions are 𝑥(0+) = 0 and 𝑥(0̇ +) = 
1/2. We work on the intervals 𝑡 < 0 and 𝑡 > 0 separately. 
On 𝑡 < 0: The input 𝛿(𝑡) = 0, so we have a homogeneous DE with initial conditions 

2 ̈ ̇ 𝑥(0−) = 0, 𝑥(0̇ −) = 0.𝑥 + 7𝑥 + 3𝑥 = 0, 

You can easily check that the solution to this is 𝑥(𝑡) = 0. 

So, on 𝑡 < 0, 𝑥(𝑡) = 0. 
On 𝑡 > 0: The input 𝛿(𝑡) = 0, so we have a homogeneous DE with initial conditions 

2 ̈ ̇ 𝑥(0+) = 0, 𝑥(0̇ +) = 1/2.𝑥 + 7𝑥 + 3𝑥 = 0, 

The characteristic roots are −1/2 and −3, so 

𝑥(𝑡) = 𝑐1𝑒−𝑡/2 + 𝑐2𝑒−3𝑡. 

Using the initial conditions we find 𝑐1 = 1/5 and 𝑐2 = −1/5. 

So, on 𝑡 > 0, 𝑥(𝑡) = 5
1𝑒−𝑡/2 − 

1
5𝑒−3𝑡. 

The full solution is 
for 𝑡 < 0 𝑥(𝑡) = {0

1 
5𝑒−3𝑡 

5𝑒−𝑡/2 − 1 for 𝑡 > 0. 

Example 20.6. Solve 4 ̈ with rest IC. 𝑥 + 𝑥 = 𝛿(𝑡) 

Solution: The pre-initial conditions are 0, so the post-initial conditions are 

𝑥(0+) = 0, 𝑥(0̇ +) = 1/4. 
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On 𝑡 < 0: The differential equation with initial conditions is 

4 ̈ 𝑥(0−) = 0, 𝑥(0−) = 0.𝑥 + 𝑥 = 0; ̇ 

The solution to this is 𝑥(𝑡) = 0. 
On 𝑡 > 0: The differential equation with initial conditions is 

4 ̈ 𝑥(0+) = 0, 𝑥(0+) = 1/4.𝑥 + 𝑥 = 0; ̇ 

We know the solution to this: 

𝑥(𝑡) = 𝑐1 cos(𝑡/2) + 𝑐2 sin(𝑡/2). 

We find 𝑐1 and 𝑐2 to match the post-initial conditions: 𝑐1 = 0, 𝑐2 = 1/2. Therefore, the 
complete solution is 

for 𝑡 < 0 𝑥(𝑡) = {0 
1
2 sin(𝑡/2) for 𝑡 > 0. 

Physical explanation. At 𝑡 = 0 an impulse kicks the simple harmonic oscillator into 
motion. After that, input is 0 and the system is in simple harmonic motion. The jump in 
momentum corresponds to the corner in graph at 0. 

𝑡 

𝑥 
1
4 

Example 20.7. Solve 4 ̈ with rest IC. 𝑥 + 𝑥 = 𝛿(𝑡 − 𝑎) 

Solution: This is an LTI system, so shifting the input from the previous example 𝑎 units 
to the right, shifts the response in the same way. 

𝑡 

𝑥 
1
4 

𝑎 

Example 20.8. (Resonance) Solve the equation 𝑥 + 𝑥 = 𝑓(𝑡) with rest IC, where the ̈ 
input 𝑓(𝑡) is an impulse every 2𝜋 seconds of magnitude 3 in the positive direction. 
Solution: We have 𝑓(𝑡) = 3𝛿(𝑡) + 3𝛿(𝑡 − 2𝜋) + 3𝛿(𝑡 − 4𝜋) + …. We can solve by solving the 
DE individually for each input: 

𝑥𝑛̈ + 𝑥𝑛 = 3𝛿(𝑡 − 2𝑛𝜋) 

and using superposition. (Note carefully that the rest IC are preserved by superposition. If 
we did not have rest IC, we would have to be a little more fussy.) The individual equations 
are exactly like the previous example. We get that the solution to 𝑥𝑛̈ + 𝑥𝑛 = 3𝛿(𝑡 − 2𝑛𝜋) is 

0 for 𝑡 < 2𝑛𝜋 𝑥𝑛(𝑡) = {3 sin(𝑡 − 2𝑛𝜋) = 3 sin(𝑡) for 𝑡 > 2𝑛𝜋 
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Now, when we superposition these solutions, we see that every 2𝜋 seconds we add another 
copy of 3 sin(𝑡) to the output. We call this resonance –the blows come at the natural 
frequency (every 2𝜋 seconds) of the system. 

⎧0 for 𝑡 < 0 

3 sin(𝑡) for 0 < 𝑡 < 2𝜋 {
𝑥(𝑡) = 6 sin(𝑡) for 2𝜋 < 𝑡 < 4𝜋 ⎨ 

9 sin(𝑡) for 4𝜋 < 𝑡 < 6𝜋 
{⎩ ⋯ 

20.8.3 Impulses as input to third-order systems 

Example 20.9. Assume rest initial conditions and solve the equation 

4(𝐷 − 1)(𝐷 − 2)(𝐷 − 3)𝑥 = 4𝑥‴ − 24𝑥″ + 44𝑥′ − 24𝑥 = 5𝛿(𝑡). 

(We give the differential operator in factored form so we can find the characteristic roots 
easily.) 

Solution: For a third-order DE, the jump caused by the impulse follows the same pattern 
as in the second-order case. That is, the input 5𝛿(𝑡) causes a jump of 5 in 4𝑥″(𝑡) at 𝑡 = 0. 
Here, the factor of 4 is the coefficient of 𝑥‴ in the DE. Thus 𝑥″ has a jump of 5/4. The 
pre-initial conditions are all zero, so after the jump the post-initial conditions are 

𝑥(0+) = 0, 𝑥′(0+) = 0, 𝑥″(0+) = 5/4. 

(In Section 20.11 we will show why this has to be the case.) 

On 𝑡 < 0: On this interval, the input 5𝛿(𝑡) = 0. So the differential equation with initial 
conditions is 

4(𝐷 − 1)(𝐷 − 2)(𝐷 − 3)𝑥 = 0, 𝑥(0−) = 0, 𝑥′(0+) = 0, 𝑥″(0+) = 0. 

The solution to this is 𝑥(𝑡) = 0. 
On 𝑡 > 0: We have the homogeneous DE with initial conditions: 

4(𝐷 − 1)(𝐷 − 2)(𝐷 − 3)𝑥 = 0, 𝑥(0+) = 0, 𝑥′(0+) = 0, 𝑥″(0+) = 5/4. 

The characteristic roots are 1, 2 and 3, so for 𝑡 > 0 we have 

𝑥(𝑡) = 𝑐1𝑒𝑡 + 𝑐2𝑒2𝑡 + 𝑐3𝑒3𝑡. 
5 = −5 5Using the initial conditions to find the coefficients, we get: 𝑐1 = 8, 𝑐2 4, 𝑐3 = 8 . 

The full solution is 
for 𝑡 < 0𝑥(𝑡) = {0 

5
8𝑒𝑡 − 4

5𝑒2𝑡 + 5
8𝑒3𝑡 for 𝑡 > 0. 
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20.9 Box vs. delta as input 

In this section we will compare box functions and delta functions as input. You will see 
that the delta function is much easier to work with! 
Example 20.10. (Box vs. delta.) Let’s compare box 𝑢ℎ(𝑡) input with unit impulse (𝛿(𝑡)) 
input by solving: ̇ with rest IC.𝑥 + 𝑘𝑥 = 𝑢ℎ 

(Physical reasoning:) This models radioactive dumping. 𝑢ℎ is the rate matter is added
ℎ 

over time and, as we have seen, the total amount added is ∫ 𝑢ℎ = 1. 
0 

In the figure below the top row of graphs show the input 𝑢ℎ for various values of ℎ. The 
corresponding responses are shown in the second row of graphs. The total amount input is 
one, so, since there is decay, at the end of the input interval, we have 𝑥(ℎ) < 1. After time
𝑡 = ℎ there is no more input and the response shows exponential decay. 
As ℎ goes to 0 the input becomes the unit impulse 𝛿(𝑡). This is shown in the last graph. 
Since the input is dumped in all at once the graph jumps from 0 to 1 at 𝑡 = 0. After 𝑡 = 0 
the graph is that of exponential decay. 

Input in units of 𝑥/time 

3 

2 

1 1 1 

𝑡 𝑡 𝑡 𝑡 1 11 2 3 

𝑥 𝑥 𝑥 𝑥 

Response 1 
dim. = amount 

𝑡 𝑡 𝑡 𝑡 

Top: a sequence of box function inputs limiting to 𝛿(𝑡). 
Bottom: response to the sequence of box functions limiting to response to 𝛿(𝑡). 

For completeness we give the exact solution to the IVP ̇𝑥 + 𝑘𝑥 = 𝑢ℎ with rest IC. 

ℎ𝑘
1 (1 − 𝑒−𝑘𝑡) for 0 < 𝑡 < ℎ𝑥 = { 1

ℎ𝑘(𝑒𝑘ℎ − 1)𝑒−𝑘𝑡 for ℎ < 𝑡 

Just as expected, as ℎ → 0 the input becomes 𝛿 and the output becomes 𝑥 = 𝑒−𝑘𝑡 (i.e.,
𝑒𝑘ℎ − 1lim = 1)

ℎ→0 ℎ𝑘 
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20.10 Generalized derivatives 

So far we have only one generalized derivative: 𝑢̇(𝑡) = 𝛿(𝑡). In this section we will learn to 
compute them for any function with jump discontinuities. 
Definition. We say a function 𝑓(𝑡) has a jump discontinuity at 𝑡 = 𝑡0 if its graph is 
continuous on both the left and right, and there is a jump at 𝑡0. 
Formally this means that both left and right limits lim 𝑓(𝑡) and lim 𝑓(𝑡) exist, but are 

𝑡↑𝑡−
0 𝑡↓𝑡+ 

different. The jump at 𝑡0 is defined as the difference 
0 

lim 𝑓(𝑡) − lim 𝑓(𝑡) 
𝑡→𝑡+

0 
𝑡→𝑡0

− 

Example 20.11. The graph of a function 𝑓(𝑡) is shown below. It has jump discontinuities 
at −2, 0 and 2. The jumps are respectively 2, −2 and 3. The graph also has a corner at
−1. That is, the graph is continuous at 𝑡 = −1, but the derivative has a jump there. 

𝑡 

−2 

1 

3 

−2 −1 1 2 

Notes. 1. Not all discontinuities result in jumps. At 𝑡 = 1 the jump between the left and 
right limits is 0. You could say the function jumps from -1.5 to 0 and back to -1.5 for a net 
jump of 0. 
2. The value of 𝑓(2) (represented by a dot on the graph) did not play a role in the value of 
the jump at 𝑡 = 2. The jump is the size of gap between the left and right branches of the 
curve. You could say the function jumps from 0 to 1.5 to 3 for a net jump of 3. 
3. At 𝑡 = 0 the jump is negative because the right branch of the graph is below the left 
branch. 
Generalized derivative: If a function is smooth except for some jump discontinuities and 
corners then its generalized derivative is: 

• the regular derivative away from the jumps and corners. 

• delta functions at the jumps. The coefficient on the delta function is the size of the 
jump. 

• undefined at the corners. 
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Reason. Just as with the unit step function, the graph has ‘infinite’ slope at a jump 
and the integral of the derivative should give the original function. This is exactly what 𝛿 
functions do at jumps. 
Example 20.12. Suppose 

⎧−2 for 𝑡 < −2 

𝑡 + 2 for − 2 < 𝑡 < −1{
𝑓(𝑡) = −𝑡 for − 1 < 𝑡 < 0⎨

𝑡2/2 − 2 for 0 < 𝑡 < 2
{⎩3 − 3(𝑡 − 2)2 for 2 < 𝑡. 

Find the generalized derivative 𝑓′(𝑡). 
Solution: We just take the regular derivative and add delta functions at the jump discon-
tinuities. Note that the corner when 𝑡 = −1 becomes a jump in the derivative. 

⎧0 for 𝑡 < −2 

1 for − 2 < 𝑡 < −1{
𝑓′(𝑡) = 2𝛿(𝑡 + 2) − 2𝛿(𝑡) + 3𝛿(𝑡 − 3) + −1 for − 1 < 𝑡 < 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ ⎨ 

singular part 𝑡 for 0 < 𝑡 < 2
{⎩−6(𝑡 − 2) for 2 < 𝑡.⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 

regular part 

Vocabulary: We name the two parts of the generalized derivative. The part which is the 
regular derivative is called the regular part and the part with delta functions due to the 
jumps is called the singular part. These are labeled in the example above. 

Example 20.13. Derivative of a square wave 

The graphs below are of a function sq(𝑡) (called a square wave) and its derivative. The 
function alternates every 𝜋 seconds between ±1. The derivative sq ′(𝑡) is clearly 0 everywhere 
except at the jumps. A jump of +2 gives a (generalized) derivative of 2𝛿 and a jump of −2 
gives a (generalized) derivative of −2𝛿. Thus we have 

sq ′(𝑡) = … + 2𝛿(𝑡 + 2𝜋) − 2𝛿(𝑡 + 𝜋) + 2𝛿(𝑡) − 2𝛿(𝑡 − 𝜋) + 2𝛿(𝑡 − 2𝜋) − 2𝛿(𝑡 − 3𝜋) + … 

⋯
−3𝜋 −2𝜋 𝜋 𝜋 2𝜋 3𝜋 4𝜋 

⋯ 
𝑡 𝑡 

2 2 2 2 

−3𝜋 𝜋 𝜋 3𝜋 

−2𝜋 

2 2 

2𝜋 

2 2 

4𝜋 

Graph of sq(𝑡) = square wave Graph of sq ′(𝑡) = impulse train 

Note that we put the weight of each delta function next to it. We use the convention that
−2𝛿(𝑡) is represented by a downward arrow with the weight 2 next to it. That is, the sign 
is represented by the direction of the arrow, so the weight is positive. 
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20.11 Generalized derivative: checking solutions, explanation for jumps 
in post-initial conditions 

In this section we will check the answers to a few of our previous examples by plugging 
them into the original DE. This should give you a feel for how a delta function as input 
causes a jump in the (𝑛 − 1)st derivative of an nth-order equation. 
Example 20.14. (Check the solution in Example 20.3) 

for 𝑡 < 0 The DE ̇ has solution 𝑥 + 𝑘𝑥 = 𝛿(𝑡) 𝑥(𝑡) = {0
𝑒−𝑘𝑡 for 𝑡 > 0. . 

This has a jump of 1 at 𝑡 = 0, so ̇𝑥(𝑡) is a generalized derivative: 

for 𝑡 < 0 ̇𝑥(𝑡) = 𝛿(𝑡) + {0 

−𝑘𝑒−𝑘𝑡 for 𝑡 > 0 

We now check: 

for 𝑡 < 0 for 𝑡 < 0 ̇ 
for 𝑡 > 0) + 𝑘 ({0 𝛿(𝑡). 𝑥 + 𝑘𝑥 = (𝛿 + {0 = −𝑘𝑒−𝑘𝑡 𝑒−𝑘𝑡 for 𝑡 > 0) 

Notice that the jump in 𝑥 yielded a delta function in 𝑥.̇ 

Example 20.15. (Check Example 20.5) Here the DE was 2 ̈ ̇𝑥 + 7𝑥 + 3𝑥 = 𝛿(𝑡) and the 
solution was 

for 𝑡 < 0 𝑥(𝑡) = {0
1
5𝑒−𝑡/2 − 5

1𝑒−3𝑡 for 𝑡 > 0. 
𝑥(𝑡) has no jump at 𝑡 = 0, so it has a regular derivative 

for 𝑡 < 0 ̇𝑥(𝑡) = {0 

−10
1 𝑒−𝑡/2 + 3

5𝑒−3𝑡 for 𝑡 > 0. 

Since ̇ ̈𝑥(𝑡) has a jump of 1/2 at 𝑡 = 0, we will get a 𝛿 function in 𝑥(𝑡): 

1 for 𝑡 < 0 ̈ 2𝛿(𝑡) + {0𝑥(𝑡) = 
20
1 𝑒−𝑡/2 − 9

5𝑒−3𝑡 for 𝑡 > 0. 

It is now easy to check that 2 ̈ ̇𝑥 + 7𝑥 + 3𝑥 = 𝛿(𝑡). 
In particular, note that 2 ̈𝑥(𝑡) = 𝛿(𝑡) + regular part. This explains why, in Example 20.5 
we wanted 𝑥̇ to jump by 1/2, i.e., then 𝑥̈ had singular part 𝛿(𝑡)/2, so 2𝑥̈ had singular part 
𝛿(𝑡), which is needed for the left hand side of the DE to equal 𝛿(𝑡). 

Example 20.16. (Check Example 20.9) We will do this check more quickly than the 
previous two. Also, we will leave out the case 𝑡 < 0 since it is always 0. As we do the 
computation, notice that 𝑥(0−) = 𝑥(0+) and 𝑥′(0−) = 𝑥′(0+), so there is no jump until 
𝑥″(0−) = 0 and 𝑥″(0+) = 5/4. Thus 𝛿(𝑡) appears in 𝑥‴(𝑡) and the jump is such that
4𝑥‴(𝑡) = 5𝛿(𝑡) + regular part. 
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To check the solution, we compute each term in the DE: 

−24𝑥 = −24 (5
8𝑒𝑡 − 

5
4𝑒2𝑡 + 

5
8𝑒3𝑡) 

44𝑥′ = 44 (5
8𝑒𝑡 − 

5
2𝑒2𝑡 + 

15
8 

𝑒3𝑡) 

−24𝑥″ = −24 (5
8𝑒𝑡 − 5𝑒2𝑡 + 

45
8 

𝑒3𝑡) 

8 
𝑒3𝑡 + 

54𝑥‴ = 4 (5
8𝑒𝑡 − 10𝑒2𝑡 + 135 

4𝛿(𝑡)) 

Adding this up verifies that 𝑥(𝑡) is a solution to the DE: 4𝑥‴ − 24𝑥″ + 44𝑥′ − 24𝑥 = 5𝛿(𝑡). 
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