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22 Fourier series introduction: continued 

22.1 Goals 

1. Be able to compute the Fourier coefficients of even or odd periodic function using 
simplified formulas. 

2. Be able to determine the decay rate of the coefficients of a Fourier series. 

3. Be able to predict the decay rate of the Fourier coefficients based on the smoothness 
of the original function. 

22.2 Introduction 

In this topic we continue our introduction to Fourier series. We start by looking at some 
tricks for computing Fourier coefficients. Then we will talk about more conceptual notions, 
including the convergence properties of Fourier series and the decay rate of Fourier coeffi-
cients. At the end, we will look at the orthogonality relations which explain the formulas 
for Fourier coefficients. 

22.3 Calculation tricks: even and odd functions 

22.3.1 Even and odd functions 

A function is an even function if 𝑓(−𝑡) = 𝑓(𝑡) for all 𝑡. 

• The graph of an even function is symmetric about the 𝑦-axis.
𝑥 𝑥 𝑥 

𝑡 𝑡 𝑡 

Graphs of some even functions 

• Examples of even functions: 1, 𝑡2, 𝑡4, …, cos(𝜔𝑡). In general, even functions are built 
out of even powers of 𝑡. Note that, the power series for cos(𝜔𝑡) has only even powers. 

• By symmetry we have the following key integration fact for even functions: 

𝐿 𝐿 

∫ 𝑓(𝑡) 𝑑𝑡 = 2 ∫ 𝑓(𝑡) 𝑑𝑡 for any even 𝑓(𝑡). 
−𝐿 0 

A function is an odd function if 𝑓(−𝑡) = −𝑓(𝑡) for all 𝑡. 

1 
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• The graph of an odd function is symmetric about the origin.
𝑥 𝑥 

𝑡 𝑡 

Graphs of some odd functions 

• Examples of odd functions: 𝑡, 𝑡3, 𝑡5, …, sin(𝜔𝑡). In general, odd functions are built 
out of odd powers of 𝑡. Note that, the power series for sin(𝜔𝑡) has only odd powers. 

• By symmetry we have the following key integration fact for odd functions: 

∫
𝐿

𝑓(𝑡) 𝑑𝑡 = 0 for any odd 𝑓(𝑡). 
−𝐿 

Products of even and odd functions 

We give the rules in a kind of short-hand. You can remember these rules by thinking about 
powers of 𝑡, e.g., 𝑡4 ⋅ 𝑡7 = 𝑡11, so even ⋅ odd is odd. 

• even ⋅ even = even, e.g., 𝑡4 ⋅ 𝑡6 = 𝑡10 

• odd ⋅ odd = even, e.g., 𝑡3 ⋅ 𝑡5 = 𝑡8 

• odd ⋅ even = odd, e.g., 𝑡3 ⋅ 𝑡6 = 𝑡9 

22.3.2 Fourier coefficients of even and odd functions 

𝐿 

• If 𝑓(𝑡) is even, then 𝑏𝑛 = 0 and 𝑎𝑛 = 𝑓(𝑡) cos(𝑛𝜋
𝐿 

𝑡) 𝑑𝑡. 𝐿
2 ∫ 

0 

𝐿 

• If 𝑓(𝑡) is odd, then 𝑎𝑛 = 0, and 𝑏𝑛 = 𝑓(𝑡) sin(𝑛𝜋
𝐿 

𝑡) 𝑑𝑡. 𝐿
2 ∫ 

0 

Reason. Assume 𝑓(𝑡) is even. Then the multiplication rules for even functions imply
𝐿 𝐿 

𝑓(𝑡) cos(𝜔𝑡) is even. So, 𝑎𝑛 = 𝑓(𝑡) cos (𝑛𝜋
𝐿 

𝑡) 𝑑𝑡 = 𝑓(𝑡) cos (𝑛𝜋
𝐿 

𝑡) 𝑑𝑡. 𝐿
1 ∫ 𝐿

2 ∫ 
−𝐿 0 

𝐿 

Likewise, the rules imply 𝑓(𝑡) sin(𝜔𝑡) is odd. So, 𝑏𝑛 = 𝑓(𝑡) sin (𝑛𝜋
𝐿 

𝑡) 𝑑𝑡 = 0.𝐿
1 ∫ 

−𝐿 

The argument is similar when 𝑓(𝑡) is odd. 

Example 22.1. In the previous topic notes we met the period 2𝜋 square wave, which over 
for − 𝜋 < 𝑡 < 0 one period has the formula sq(𝑡) = {−1 

1 for 0 < 𝑡 < 𝜋. 
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𝑡 
⋯ ⋯ 

−3𝜋 −2𝜋 −𝜋 𝜋 2𝜋 3𝜋 

1 

−1 

Graph of sq(𝑡) = square wave 

Since the period is 2𝜋, we have 𝐿 = 𝜋. Since sq(𝑡) is odd, we know that 𝑎𝑛 = 0 and 

𝜋 𝜋 𝜋 42 2 for 𝑛 odd 𝑛𝜋 𝑏𝑛 = sq(𝑡) sin(𝑛𝑡) 𝑑𝑡 = sin(𝑛𝑡) 𝑑𝑡 = −𝑛𝜋
2 cos(𝑛𝑡)∣ = {𝜋 ∫ 𝜋 ∫ 

0 0 for 𝑛 even.0 0 

We have found the Fourier series for sq(𝑡): 
∞ 4 + 

sin(5𝑡) 4 sin(𝑛𝑡)sq(𝑡) = ∑ 𝑏𝑛 sin(𝑛𝑡) = 𝜋 
(sin(𝑡) + 

sin(3𝑡) + ⋯) = .3 5 𝜋 ∑ 𝑛 𝑛=1 𝑛 odd 

Example 22.2. Triangle wave function (also called the continuous sawtooth function). Let
𝑓(𝑡) have period 2𝜋 and 𝑓(𝑡) = |𝑡| for −𝜋 ≤ 𝑡 ≤ 𝜋. Compute the Fourier series of 𝑓(𝑡). 

𝑡 
⋯ ⋯ 

−3𝜋 −2𝜋 −𝜋 𝜋 2𝜋 3𝜋 

𝜋 

Graph of 𝑓(𝑡) = triangle wave 

Since 𝑓(𝑡) is an even function, we know that 𝑏𝑛 = 0 and for 𝑛 ≠ 0 we have 
𝜋 𝜋 

𝑎𝑛 = |𝑡| cos(𝑛𝑡) 𝑑𝑡 = 𝑡 cos(𝑛𝑡) 𝑑𝑡 𝜋
1 ∫ 𝜋

2 ∫ 
−𝜋 0

𝜋 

𝜋
2 [𝑡 sin(𝑛𝑡) + 

cos(𝑛𝑡) 2 for 𝑛 odd 𝑛2𝜋 = ] = 𝑛2𝜋 
((−1)𝑛 − 1) = {− 4 

𝑛 𝑛2
0 0 for 𝑛 even. 

𝜋 𝜋 

As usual, we compute 𝑎0 separately: 𝑎0 = |𝑡| 𝑑𝑥 = 𝑡 𝑑𝑡 = 𝜋.𝜋
1 ∫ 𝜋

2 ∫ 
−𝜋 0 

Thus we have the Fourier series for 𝑓(𝑡): 
∞𝑎0 𝜋 + 

cos(5𝑡) 𝜋 cos(𝑛𝑡)𝑓(𝑡) = ∑ 𝑎𝑛 cos(𝑛𝑡) = 2 − 𝜋
4 (cos(𝑡) + 

cos(3𝑡) + ⋯) = 2 − 4 .2 + 32 52 𝜋 ∑ 𝑛2
𝑛=1 𝑛 odd 

22.4 Summing Fourier series 

We can use the sum of a finite number of terms from a Fourier series to approximate the 
original function. The applet 
https://web.mit.edu/jorloff/www/OCW-ES1803/fourierapproximation.html illustrates 
this. In the following sections we will bring out the following key points: 

https://web.mit.edu/jorloff/www/OCW-ES1803/fourierapproximation.html
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• The first few terms of the Fourier series approximate the shape of the function, not 
necessarily the value of the function at any one point. 

• At points of continuity, the Fourier series converges to the original function. 

• The smoother the function, the faster the Fourier series converges to the function. 

• At jumps in the graph, no matter how many terms you use, the Fourier series always 
overshoots the graph near that point. 

22.5 Convergence of Fourier series 

Piecewise smooth: The period 2𝐿 function 𝑓(𝑡) is called piecewise smooth if there are 
only a finite number of points 0 ≤ 𝑡1 < 𝑡2 < … < 𝑡𝑛 ≤ 2𝐿 where 𝑓(𝑡) is not differentiable 
and at each of these points the left and righthand limits 

𝑓(𝑡+
𝑖 ) = lim 𝑓(𝑡) and 𝑓(𝑡−

𝑖 ) = lim 𝑓(𝑡) 
𝑡→𝑡+

𝑖 
𝑡→𝑡−

𝑖 

exist (although they might not be equal). 
In short, a function is piecewise smooth if it is smooth except at a discrete set of points 
where is has jump discontinuities. 
Here is our main theorem about convergence of Fourier series. We will not prove it in 
ES.1803. 
Theorem: If 𝑓(𝑡) is piecewise smooth and periodic, then the Fourier series for 𝑓 : 
1. Converges to 𝑓(𝑡) at values of 𝑡 where 𝑓 is continuous. 
2. Converges to the average of 𝑓(𝑡−) and 𝑓(𝑡+) at values of 𝑡 where 𝑓(𝑡) has a jump 
discontinuity. 
Example 22.3. Square wave. The square wave in the example above has jump discontinu-
ities. No matter how we specify the endpoint behavior of sq(𝑡), the Fourier series converge 
to 0, i.e., the midpoint of the gap, at the discontinuities. 

𝑡 ⋯ ⋯ 
𝑡 ⋯ ⋯ 

Original sq(𝑡) Fourier series 
Example 22.4. The triangle wave in the example above is continuous so its Fourier series 
converges to the original function 𝑓(𝑡). 

Example 22.5. We give one more graphical example. Here the original function has 
discontinuities –admittedly somewhat artificial. Since the left and righthand limits are the 
same at each discontinuity the Fourier series is continuous. 
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𝑡 
⋯ ⋯ 

𝑡 
⋯ ⋯ 

Original 𝑓(𝑡) Fourier series 

22.5.1 Decay rate of Fourier coefficients 

Sequences like 𝑎𝑛 = 1/𝑛 and 𝑏𝑛 = 1/𝑛2 go to 0 as 𝑛 goes to infinity. We say they decay to 
0. Clearly 𝑏𝑛 goes to 0 faster than 𝑎𝑛. We will say ‘𝑏𝑛 decays like 1/𝑛2’. 
In general we will ignore constant factors, so, for example, we say 4/(𝑛𝜋) decays like 1/𝑛. 
Example 22.6. The Fourier coefficients of sq(𝑡) are 

= {4/(𝑛𝜋) for 𝑛 odd 𝑎𝑛 = 0 and 𝑏𝑛 0 for 𝑛 even. 

We say these coefficients decay like 1/𝑛. 
Example 22.7. The triangle wave looked at above has Fourier coefficients 

= {−4/(𝑛2𝜋) for 𝑛 odd 𝑏𝑛 = 0 and 𝑎𝑛 0 for even 𝑛 ≠ 0. 

So these coefficients decay like 1/𝑛2. 
Example 22.8. The coefficients 𝑎𝑛 = 1/(𝑛 + 𝑛2) decay like 1/𝑛2. 
Example 22.9. If a Fourier series has 𝑎𝑛 = 1/𝑛 and 𝑏𝑛 = 1/𝑛2, we say 𝑎𝑛 decays like 1/𝑛 
and 𝑏𝑛 decays like 1/𝑛2. The Fourier coefficients as a whole decay like the slower of the two 
rates. That is, they decay like 1/𝑛. 
Example 22.10. The function 𝑓(𝑡) = 3 cos(𝑡) + 5 cos(2𝑡) is a finite Fourier series. The 
coefficients are 𝑎0 = 0, 𝑎1 = 3, 𝑎2 = 5, 𝑎3 = 0, 𝑎4 = 0, … We say these coefficients decay 
like 0. 

22.5.2 Important heuristics 

• If a function has a jump discontinuity, then its Fourier coefficients decay like 𝑛
1 , e.g., 

the square wave. 

• If a function has a corner, then its Fourier coefficients decay like 𝑛
1
2 , e.g., the triangle 

wave 

• A smooth function has Fourier coefficients that decay like 𝑛
1
3 or faster. 

• The smoother the function, the faster the coefficients decay. 
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22.6 Gibbs’ phenomenon 

22.6.1 Non-local nature of Fourier series 

Generally speaking, if we sum the first few terms of a Fourier series, it will match the overall 
shape of the original function. An analogy is the way a squares fit of data points matches 
the shape of the data without necessarily going through any of the data points. 
The figures below show the square wave and its Fourier series summed to some number 

of terms. The first plot uses just the first term, i.e., 𝜋
4 sin(𝑡). Notice how it matches the 

general oscillation of the square wave without matching it well at any particular place. 
4The second plot uses the terms out to 𝑛 = 3, i.e., 𝜋 

(sin(𝑡) + 
sin(3𝑡)). This fits the square 3 

wave a little better than the first plot. The third plot uses the terms out to 𝑛 = 21. This 
fits the square even better. 

t−π π

1

−1

1.18

−1.18

t−π π

1

−1

1.18

−1.18

t−π π

1

−1

1.18

−1.18

t−π π

1

−1

1.18

−1.18

Sum up to 𝑛 = 1 Sum up to 𝑛 = 3 Sum up to 𝑛 = 9 Sum up to 𝑛 = 21 

22.6.2 Gibbs’ phenomenon 

In the figures above, notice that the peak of the reconstructed square wave always overshoot 
the square 0.18, i.e., it goes up to about 1.18 or down to −1.18. As the number of terms 
increases, the point where the overshoot occurs moves closer to the point of discontinuity, 
but never disappears. 
This is a general phenomenon, called Gibbs’ phenomenon. For any periodic function with 
a jump discontinuity, summing any number of terms from its Fourier series will always 
overshoot the jump by about 9% of the size of the jump. For example, the square wave has 
a jump of size 2, so the overshoot is about 2 ⋅ 0.09 = 0.18. Gibbs’ phenomenon is extremely 
important in many applications, e.g., digital filtering of signals. 
We won’t prove Gibbs’ phenomenon in ES.1803. For those who are interested, we’ve posted 
an enrichment note with the proof. It should accessible to anyone who knows calculus. 
The applet 
https://web.mit.edu/jorloff/www/OCW-ES1803/fourierapproximation.html 
shows this overshoot in several cases. 

https://web.mit.edu/jorloff/www/OCW-ES1803/fourierapproximation.html
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22.7 Orthogonality relations 

22.7.1 Orthognality relation integrals 

The key to the integral formulas for Fourier coefficients are the orthogonality relations. 
These are the following integral formulas that say certain trigonometric integrals are either 
0 or 1. 

⎧1 𝑛 = 𝑚 ≠ 0 1 𝐿 

cos (𝑛𝜋
𝐿 

𝑡) cos (𝑚𝜋 {
𝐿 ∫ 𝐿 

𝑡) 𝑑𝑡 =
{

0 𝑛 ≠ 𝑚 ⎨−𝐿 ⎩2 𝑛 = 𝑚 = 0 
𝐿 1 sin (𝑛𝜋

𝐿 
𝑡) cos (𝑚𝜋 

𝐿 
𝑡) 𝑑𝑡 = 0𝐿 

∫ 
−𝐿 

𝐿 1 sin (𝑛𝜋
𝐿 

𝑡) sin (𝑚𝜋 𝑛 = 𝑚 ≠ 0 
𝐿 

𝑡) 𝑑𝑡 = {1 
𝐿 ∫ 0 𝑛 ≠ 𝑚 −𝐿 

Proof. We have two methods to do this. We will carry out the first, but only mention the 
second. 
Method 1: Use the following trigonometric identities 

cos(𝛼) cos(𝛽) = 
cos(𝛼 + 𝛽) + cos(𝛼 − 𝛽) 

2 
sin(𝛼 + 𝛽) + sin(𝛼 − 𝛽) sin(𝛼) cos(𝛽) = 

sin(𝛼) sin(𝛽) = 
cos(𝛼 − 𝛽) −

2 
cos(𝛼 + 𝛽)

2 

Method 2: Use cos(𝑎𝑡) = 𝑒𝑖𝑎𝑡+𝑒
2 

−𝑖𝑎𝑡 etc. 
Using method 1 we get the following if 𝑛 ≠ 𝑚: 

𝐿 𝐿 cos ((𝑛+𝑚)𝜋𝑡) + cos ((𝑛−𝑚)𝜋 1 cos (𝑛𝜋
𝐿 

𝑡) cos (𝑚𝜋 1 𝐿 𝐿 𝑡)
𝐿 

𝑡) 𝑑𝑡 = 𝑑𝑡 𝐿 ∫ 𝐿 ∫ 2−𝐿 −𝐿 

2𝐿 
[

sin ((𝑛+𝑚)𝜋 sin ((𝑛−𝑚)𝜋 

= 
1 𝐿 𝑡) 𝐿 𝑡)

∣
𝐿 

(𝑛 + 𝑚)𝜋/𝐿 
+ (𝑛 − 𝑚)𝜋/𝐿 

−𝐿 

= 0. 
The last equality is easy to see since every term is 0 when 𝑡 = ±𝐿. 
The case 𝑛 = 𝑚 is special because then 𝑛 − 𝑚 = 0. It is easy to use the first trig identity 
above with 𝛼 = 𝛽, i.e., cos(𝛼) cos(𝛼) = (cos(2𝛼) + 1)/2, to see that the integral in this case 
is 1. All the other orthogonality relations are proved in a similar fashion. 
The term orthogonality comes from linear algebra, where we say two vectors are orthogonal 
if there dot product is 0. It turns out that we can think of ∫𝐿 

−𝐿 
𝑓(𝑡)𝑔(𝑡) 𝑑𝑡 as a dot product 

(usually called inner product) between 𝑓 and 𝑔. So the orthogonality relations say that, for 
𝑛 ≠ 𝑚, the functions cos(𝑛𝜋𝑡/𝐿) and cos(𝑚𝜋𝑡/𝐿) are orthogonal. 
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22.7.2 Using orthogonality relations to show the formula for Fourier coefficients 

The orthogonality relations allow us to see that if 𝑓(𝑡) is written as a Fourier series, then 
the coefficients must be given by the integral formulas we’ve been using. 
So suppose 𝑓(𝑡) has Fourier series’: 

𝑓(𝑡) = 
𝑎
2
0 + 𝑎1 cos (𝐿

𝜋 𝑡) + 𝑎2 cos (2𝜋
𝐿 

𝑡) + ⋯ + 𝑏1 sin (𝐿
𝜋 𝑡) + 𝑏2 sin (2𝜋

𝐿 
𝑡) + ⋯ 

Then for 𝑛 > 0 

𝐿 𝐿 1 1 [𝑎
2
0 cos (𝑛𝜋 

𝐿𝑡) cos (𝑛𝜋 𝑓(𝑡) cos (𝑛𝜋
𝐿 

𝑡) 𝑑𝑡 = 𝐿 
𝑡) + 𝑎1 cos ( 

𝜋 
𝐿 

𝑡)𝐿 ∫ 𝐿 ∫ 
−𝐿 −𝐿 

𝐿 
𝑡) cos (𝑛𝜋 + 𝑎2 cos (2𝜋 

𝐿 
𝑡) + ⋯ 

𝐿𝑡) cos (𝑛𝜋 
𝐿 

𝑡) cos (𝑛𝜋 +𝑏1 sin ( 
𝜋 

𝐿 
𝑡) + 𝑏2 sin (2𝜋 

𝐿 
𝑡) + ⋯] 𝑑𝑡 

Now we can apply the orthogonality relations to each term. All of them are 0, except 

𝐿 𝑡) cos (𝑛𝜋 the term with 𝑎𝑛 cos (𝑛𝜋 
𝐿 𝑡) which, again by the orthogonality relations, integrates 

𝐿 

to 𝑎𝑛. Thus, 𝑓(𝑡) cos(𝑛𝜋
𝐿 

𝑡) 𝑑𝑡 = 𝑎𝑛. Which is exactly the formula for the Fourier 𝐿
1 ∫ 

−𝐿 
coefficient. The formulas for 𝑎0 and 𝑏𝑛 are found in the same way. 

22.8 Hearing a musical triad: C-E-G 

Here is a simplified Fourier-centric view of how humans hear sound. 
Sound reaches your ear as a pressure wave. For example 

𝑓(𝑡) = 𝑎1 cos(𝜔1𝑡) + 𝑎2 cos(𝑤2𝑡) + ⋯ 

Do the ears do Fourier analysis? 

Answer: Yes! The ear contains hair-like structures called stereocilia. These are different 
sizes and, so, resonate at different frequencies. As they vibrate they stimulate nerves, which 
then send signals to the brain. Thus, for each frequency in the pressure wave, the brain is 
getting a signal from the nerves attached to the stereocilia which vibrate at that frequency. 
The greater the amplitude in the input wave the greater the amplitude of the signal sent 
to the brain. 
Does the brain do Fourier synthesis? 

Answer: Yes! It is up to the brain to combine all the nerve signals at different frequencies 
into a single signal which it then interprets. 
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